NETWORK ANALYSIS 18EC35

By

K PRABHAVATHI
Assistant Professor
Department of ECE BGSIT,BG Nagar

SYLLABUS

1. Basic Concepts
2. Network Theorems
3. Transient Behavior and Initial Conditions \&

Laplace Transforms \& Applications
4. Resonance circuits
5. Two port network parameters

Course Outcomes

- Solve electrical circuits using different transformation techniques, mesh and nodal methods.
- Analyze complex electric circuits using network theorems.
- Evaluate the behavior of R-L-C electrical circuits considering Initial conditions and Laplace transformation.
- Analyze series and parallel resonant circuits.
- Construct two port models for given network by determining $\mathrm{Z}, \mathrm{Y}, \mathrm{h}$ and T parameters.

MODULE-1
 BASIC CONCEPTS

CONTENTS

$>$ Practical Sources
$>$ Source Transformations
$>$ Network Reduction using Star-Delta Transformation
$>$ Loop and Node analysis with linearly dependent and independent sources for DC \& AC Networks

INTRODUCTION

WHAT IS A NETWORK ...?

Any arrangement of various electrical energy sources along with the different circuit elements is called Electrical Network.

Any individual circuit element with two terminals which can be connected to other circuit element is called Network Element.

A part of the network which connects the various points of the network with one another is called A Branch.

Ex: AB, BC, CD, DA, CF, DE \& EF

A point where three or more branches meet is called a Junction Point.

Ex: Point C \& D

A point at which two or more elements are joined together is called Node.

> Ex: A, B, C, D, E, F

A closed path which originates from a particular node, terminating at the same node, traveling through various other nodes, without traveling through any node twice is called

Mesh or Loop.

Ex: A-B-C-D-A, A-B-C-F-E-D-A.
Mesh does not contain any other loop within it. A mesh is always a loop but a loop may or may not be a mesh.

Active Network

A network consisting at least one source of energy is called active network.

Ex: Network consisting at least one battery, voltage source, current source,,etc.

Passive Network

A network which contains no energy sources is called passive network.
Ex: Network consisting only elements such as R, L and C without any energy sources.

Concept of Ideal \& Practical Sources

There are basically two types of energy sources;
\checkmark Voltage source
\checkmark Current source

These are classified as
> Ideal Source
> Practical source

Ideal Voltage Source

Characteristics

Characteristics

Ideal Current Source

Characteristics

Practical Current Source

Characteristics

Classification of voltage \& Current sources (Independent sources)

(a) D. C. voltage source

(b) A. C. voltage source

(d) A. C. current source

Dependent Sources

(a)

(b)

(c)

(d)
a. Voltage Dependent Voltage source: It produces the voltage as a function of voltage elsewhere in the given circuit.
b. Current Dependent Current source: It produces the current as a function of current elsewhere in the given circuit.
c. Current Dependent Voltage source: It produces the voltage as a function of current elsewhere in the given circuit.
d. Voltage Dependent Current source: It produces the current as a function of voltage elsewhere in the given circuit.

Ohm's Law

This Law gives the relationship between the potential difference (V), the current (I) and the resistance (R) of the DC circuit.

Statement: The current flowing through electric circuit is directly proportional to the potential difference across the circuit and inversely proportional to the resistance of the circuit, provided the temperature remains constant.

$$
\mathrm{I} \alpha \frac{V}{R} \rightarrow \mathrm{I}=\frac{V}{R} \rightarrow \mathrm{~V}=\mathrm{IR}
$$

Series and Parallel Combination of Elements

Element	Equivalent
' n ' Resistances in series	$R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\cdots+R_{n}$
' n ' Inductors in series	$\mathrm{L}_{\text {eq }}=\mathrm{L}_{1}+\mathrm{L}_{2}+\cdots+\mathrm{L}_{\mathrm{n}}$
' n ' Capacitors in series	$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{n}}$

' n ' Resistances in parallel

$$
\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\cdots+\frac{1}{\mathrm{R}_{\mathrm{n}}}
$$

' n ' Inductors in parallel

$$
\frac{1}{L_{e q}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{n}}
$$

' n ' Capacitors in paraliel

$$
C_{e q}=C_{1}+C_{2}+\cdots+C_{n}
$$

Find the equivalent resistance between points A and B.

20Ω

Kirchhoff's Current Law

"The total Current flowing towards a junction point is equal to the total current flowing away from that junction point"

"The algebraic sum of all the current meeting at a junction point is always zero"
From the above figure,

$$
\begin{gathered}
I_{1}+I_{2}=I_{3}+I_{4} \\
(\mathrm{OR}) \\
I_{1}+I_{2}+I_{3}+I_{4}=0
\end{gathered}
$$

Kirchhoff's Voltage Law

"In any closed loop network, the total voltage around the loop is equal to the sum of all voltage drops within the same loop"

"The algebraic sum of all voltages within the loop must be equal to zero" From the above figure,

$$
\begin{gathered}
20=12.5 \mathrm{I}+5 \mathrm{I} \\
(\mathrm{OR})
\end{gathered}
$$

$$
20-12.5 \mathrm{I}-5 \mathrm{I}=0
$$

(a)

(b)

When the current flows through resistance, the voltage drop occurs.
(a) I is flowing from right to left - point B potential > point A potential
(b) I is flowing from left to right - point A potential > point B potential

Source Transformation

While solving the electrical network, sometimes it is required to convert one type of source to another.
Two sources are said to be identical, when they produce identical terminal voltage V_{L} \& load current I_{L}.

The above figures represent a practical current \& voltage source with load connected to both the sources.

From fig(a)
$I_{L}=\frac{V}{r+R_{L}}$

$$
\begin{align*}
& \text { From fig }(\mathrm{b}) \\
& L_{L}=\frac{I x r}{r+R_{L}}--- \tag{2}
\end{align*}
$$

From fig(a)

$I_{L}=\frac{V}{r+R_{L}}-----------(1)$

From fig(b)
$L_{L}=\frac{I x r}{r+R_{L}}-----------(2)$

From (1) and (2),

$$
\begin{aligned}
& \frac{V}{r+R_{L}}=\frac{I x r}{r+R_{L}} \\
\Rightarrow \mathrm{~V}=\mathrm{Ir} & \text { (or) } \quad \mathrm{I}=\frac{V}{r}
\end{aligned}
$$

Hence, A voltage source V in series with its internal resistance r can be converted into a current source $I=\frac{r}{r}$, with same ' r ' connected in parallel with it.

Combination of Sources

1. Voltage Sources in Series

Combination of Sources

2. Voltage Sources in Parallel

3. Current Sources in Series

$$
\begin{aligned}
& \overline{\phi^{n}} \cdot \overline{\phi_{m}} \quad \overline{\phi_{n}}=\phi_{m}
\end{aligned}
$$

Problem1: Transform a voltage source of 20 volts with an internal resistance of 5Ω to a current source.

Then the current of current source is, $I=\frac{V}{r}=\frac{2 D}{5}=4 \mathrm{~A}$ with internal parallel resistance same as ' r '.

Problem2: Convert the given current source of 50 A with internal resistance of 10Ω to the equivalent voltage source.

The given values are $\mathrm{I}=50 \mathrm{~A}$ and $\mathrm{r}=10 \Omega$.

$$
\begin{aligned}
V=I \times r & =50 \times 10 \\
& =500 \mathrm{~V}
\end{aligned}
$$

$R_{s e}=R_{s h}=r=10 \Omega$ in series

Problem 3: Using source transformation find power delivered by 50 V source in given network.

Applying KVL, 50-5I-1.2I-16=0

$$
\mathrm{I}=5.484 \mathrm{~A}
$$

Power delivered by 50V source $=\mathbf{V}$ I
$=50 \times 5.484=274.2 \mathrm{~W}$

Problem 4: Using Source transformation find the load I_{L} in the following circuit.

$$
I_{L}=\frac{20}{12.5+5}=1.1428 \mathrm{~A}
$$

Problem 5: Simplify the network into a single current source.

Voltage Division Rule

$$
\begin{aligned}
& V_{R 1}=\frac{V_{S} \cdot R_{1}}{R_{1}+R_{2}} \\
& V_{R 2}=\frac{V_{S} \cdot R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Current Division Rule

Source Shifting

In a Network, if there is no impedance in series with voltage source and there is no impedance in parallel with a current source, then source transformation can not be applied.

1. Voltage Source Shifting

1. Voltage Source Shifting

2. Current Source Shifting

2. Current Source Shifting

Problem 1: Using source transformation and source shifting techniques, find voltage across 2Ω resistor.

Shift 5 V source in series with 4Ω and 3Ω resistors.

Adding
current sources

Using Current Division Rule,

$$
\begin{aligned}
& I=2.625 \times \frac{2.667}{2.667+2}=1.5 \mathrm{~A} \\
& V=\mathbf{I} \times 2=1.5 \times 2=\mathbf{3} \mathbf{V}
\end{aligned}
$$

Problem 2: Reduce the network shown in figure and find ' i ' using source shifting and source transformation.

Applying KVL,

$$
\begin{aligned}
& 10-15 / 4 \mathrm{i}-5 \mathrm{i}=0 \\
& 10=(15 / 4+5) \mathrm{i} \\
& \mathrm{i}=8 / 7 \mathrm{~A}=1.1428 \mathrm{~A}
\end{aligned}
$$

Problem 3: Reduce the network shown in figure to a single voltage source in series with a resistance using source shifting and source transformation.

Star-Delta \& Delta-Star Transformation

If $\mathbf{3}$ impedances are connected in such a manner that one end of each is connected together to form a junction point called "star point" and impedances are said to be connected in Star fashion (T connection).

If $\mathbf{3}$ impedances are connected in such a manner that one end of the first is connected to first end of the second, the second end of the second is connected to first end of third and so on to complete a loop then the impedances are said to be connected in "Delta" and the delta connection (Pi Connection) is always a closed path.

Delta-Star / т to T Transformation

Consider 3 impedances $Z_{A}, Z_{B} \& Z_{C}$ connected in Delta as shown.

The terminals between which these are connected in delta are named as 1,2,3.

It is always possible to replace these delta by 3 equivalent star connected impedances $Z_{1}, Z_{2} \& Z_{3}$ between the same terminal 1,2,3.

Consider terminal 1 and 2, Let us find equivalent impedance
 between 1 and 2.

We can redraw the circuit as viewed from 1 \& 2, without
 considering 3.

Between terminals 1 \& 2, impedance is given by,

$$
\begin{align*}
& \mathrm{Z}_{12}=\mathrm{Z}_{\mathrm{B}}| |\left(\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{C}}\right) \\
& \mathrm{Z}_{12}=\frac{\mathrm{Z}_{\mathrm{B}} \cdot\left(\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{C}}\right)}{\mathrm{Z}_{\mathrm{B}}+\left(\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{C}}\right)} . \tag{1}
\end{align*}
$$

Now consider the same 2 terminals of equivalent star connection as shown.

Between 1 \& 2, the impedance is $Z_{12}=Z_{1}+Z_{2}$

To have star connection equivalent to delta connection,
It is necessary that impedances are calculated between terminals $1 \& 2$ in both cases should be equal and hence equate (1) \& (2).

$$
\frac{\mathrm{Z}_{\mathrm{B}} \cdot\left(\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{C}}\right)}{\mathrm{Z}_{\mathrm{B}}+\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{C}}}=Z_{1}+Z_{2}
$$

Similarly,

$$
\begin{align*}
& \frac{\mathrm{Z}_{C} \cdot\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}\right)}{\mathrm{Z}_{C}+\mathrm{Z}_{A}+\mathrm{Z}_{B}}=Z_{2}+Z_{3} \\
& \frac{\mathrm{Z}_{A} \cdot\left(\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}}=Z_{1}+Z_{3} \tag{4}
\end{align*}
$$

To find $Z_{1}, Z_{2} \& Z_{3}$ in terms of $Z_{A}, Z_{B} \& Z_{C}$

Subtract equation (4) from (3)

$$
\begin{aligned}
& \frac{\mathrm{z}_{\mathrm{B}} \cdot\left(\mathrm{z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{C}}\right)}{\mathrm{z}_{\mathrm{B}}+\left(\mathrm{z}_{\mathrm{A}}+\mathrm{z}_{\mathrm{C}}\right)}-\frac{\mathrm{z}_{C} \cdot\left(\mathrm{z}_{A}+\mathrm{Z}_{B}\right)}{\mathrm{z}_{C}+\left(\mathrm{z}_{\mathrm{A}}+\mathrm{Z}_{B}\right)}=Z_{1}+Z_{2}-Z_{2}-Z_{3} \\
& \frac{\mathrm{Z}_{A} \mathrm{Z}_{B}+\mathrm{Z}_{B} \mathrm{Z}_{C}-\mathrm{Z}_{A} \mathrm{Z}_{C}-\mathrm{Z}_{B} Z_{C}}{\mathrm{z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}}=Z_{1}-Z_{3}
\end{aligned}
$$

$$
\begin{equation*}
\frac{\mathrm{Z}_{A} \mathrm{Z}_{B}-\mathrm{Z}_{A} \mathrm{Z}_{C}}{\mathrm{z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}}=\mathrm{Z}_{1}-\mathbf{Z}_{3} \tag{6}
\end{equation*}
$$

Adding equation (5) from (6)

$\frac{\mathrm{Z}_{A} \cdot\left(\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)}{\mathrm{Z}_{A}+\left(\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)}+\frac{\mathrm{Z}_{A} \mathrm{Z}_{B}-\mathrm{Z}_{A} \mathrm{Z}_{C}}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}}=Z_{1}+Z_{3}+Z_{1}-Z_{3}$

$$
\frac{\mathrm{Z}_{A} Z_{C}+\mathrm{Z}_{A} Z_{B}+Z_{A} Z_{B}-Z_{A} Z_{C}}{Z_{A}+Z_{B}+Z_{C}}=2 Z_{1}
$$

$$
\frac{2 \mathrm{Z}_{A} \mathrm{Z}_{B}}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}}=2 Z_{1}
$$

$$
\frac{\mathrm{Z}_{A} \mathrm{Z}_{B}}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}}=Z_{1}
$$

$$
Z_{1}=\frac{Z_{A} Z_{B}}{Z_{A}+Z_{B}+Z_{C}}
$$

Similarly,

$$
\begin{aligned}
Z_{2} & =\frac{Z_{B} Z_{C}}{Z_{A}+Z_{B}+Z_{C}} \\
Z_{3} & =\frac{Z_{C} Z_{A}}{Z_{A}+Z_{B}+Z_{C}}
\end{aligned}
$$

Star- Delta / T to Ti Transformation

Consider 3 impedances $Z_{1}, Z_{2} \& Z_{3}$ connected in Star as shown.
The terminals between which these are connected in delta are named as 1,2,3.

It is always possible to replace these Star by 3 equivalent delta connected impedances $Z_{A}, Z_{B} \& Z_{C}$ between the same terminal 1,2,3.

To find $Z_{A}, Z_{B} \& Z_{C}$ in terms of $Z_{1}, Z_{2} \& Z_{3}$.

Use the equations results from delta-star transformation

$$
\begin{align*}
Z_{1} & =\frac{\mathrm{Z}_{A} \mathrm{Z}_{B}}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}} \tag{1}\\
Z_{2} & =\frac{\mathrm{Z}_{B} \mathrm{Z}_{C}}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}} \tag{2}\\
Z_{3} & =\frac{\mathrm{Z}_{C} \mathrm{Z}_{A}}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}} \tag{3}
\end{align*}
$$

Multiply (1)\&(2), (2)\&(3) and (3)\&(1)

$$
\begin{align*}
& Z_{1} Z_{2}=\frac{\mathrm{Z}_{A} \mathrm{Z}_{B}{ }^{2} \mathrm{Z}_{C}}{\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)^{2}} \tag{4}\\
& Z_{2} Z_{3}=\frac{\mathrm{Z}_{B} \mathrm{Z}_{C}{ }^{2} \mathrm{Z}_{A}}{\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)^{2}} \tag{5}\\
& Z_{3} Z_{1}=\frac{\mathrm{z}_{C} \mathrm{Z}_{A}{ }^{2} \mathrm{Z}_{B}}{\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)^{2}} \tag{6}
\end{align*}
$$

Adding (4), (5) and (6)

$$
\begin{aligned}
& Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}=\frac{\mathrm{Z}_{A} \mathrm{Z}_{B}{ }^{2} \mathrm{Z}_{C}+\mathrm{Z}_{B} Z_{C}{ }^{2} \mathrm{Z}_{A}+\mathrm{Z}_{C} \mathrm{Z}_{A}{ }^{2} \mathrm{z}_{B}}{\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)^{2}} \\
& =\frac{\mathrm{Z}_{A} \mathrm{Z}_{B} \mathrm{Z}_{C}\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)}{\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)^{2}}
\end{aligned}
$$

$$
\begin{equation*}
Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}=\frac{\mathrm{Z}_{A} Z_{B} Z_{C}}{\left(Z_{A}+Z_{B}+Z_{C}\right)} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}=\frac{\mathrm{z}_{A} Z_{B} \mathrm{Z}_{C}}{\left(\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}\right)} \tag{7}
\end{equation*}
$$

From equation (1)

$$
Z_{1}=\frac{\mathrm{Z}_{A} \mathrm{Z}_{B}}{\mathrm{Z}_{A}+\mathrm{Z}_{B}+\mathrm{Z}_{C}}
$$

Substitute in equation (7) in R.H.S , we get

$$
\begin{gathered}
Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}=Z_{1} Z_{C} \\
Z_{C}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{1}} \\
Z_{C}=Z_{2}+Z_{3}+\frac{Z_{2} Z_{3}}{Z} \\
Z_{A}=Z_{1}+Z_{3}+\frac{Z_{1} Z_{3}}{Z} \\
Z_{B}=Z_{1}+Z_{2}+\frac{Z_{1} Z_{2}}{Z}
\end{gathered}
$$

Problem 1: Three impedances $Z_{a}=6 \angle 90^{\circ} \Omega, Z_{b}=6 \angle 60^{\circ} \Omega$ and $Z_{c}=6 \angle-90^{\circ} \Omega$ are connected in star. Calculate the values of Z_{x}, Z_{y} and Z_{z} of the equivalent Delta.

$$
\begin{aligned}
& Z_{a}=6 \angle 90^{0} \Omega=0+6 j \\
& Z_{b}=6 \angle 60^{0} \Omega=3+5.196 j \\
& Z_{c}=6 \angle-90^{0} \Omega=0-6 j
\end{aligned}
$$

From Star to Delta Conversion,

$$
\begin{aligned}
& Z_{y}=Z_{a}+Z_{b}+\frac{Z_{a} Z_{b}}{Z_{b}}=6 j+3+5.196 j+\frac{6 \angle 90^{0} X 6 \angle 60^{0}}{6 Z_{c}-90^{0}}=6 j=6 \angle 90^{0} \\
& Z_{z}=Z_{b}+Z_{c^{+}} \overline{Z_{a}}=3+5.196 j-6 j+\frac{6 \angle 90^{0}}{}=-6 j=6 \angle-90
\end{aligned}
$$

Problem 2: Determine $R_{\text {in }}$ using Star- Delta transformation in the network shown.

$$
\begin{aligned}
R_{\text {in }} & =8.6+(7.2 \| 27.6) \\
& =8.6+5.7103 \\
& =14.3103 \Omega
\end{aligned}
$$

Problem 3: Compare the resistance across the terminals A and B of the network shown using Star-Delta transformation.

$$
\begin{aligned}
& R_{e q}=54| | 54| | 54=18 \Omega \\
& R_{1}=\frac{6 \times 6}{6+6+18}=1.2 \Omega \\
& R_{2}=\frac{6 \times 18}{6+6+18}=3.6 \Omega \\
& R_{3}=\frac{6 \times 18}{6+6+18}=3.6 \Omega
\end{aligned}
$$

$$
R_{e q}=3.6+(21.6| | 7.2)=5.4+3.6=9 \Omega
$$

Problem 4: Find the star equivalent of the following circuit shown.

$$
\begin{aligned}
& \mathbf{R}_{1}=\frac{13 \times 6}{13+6+7}=3 \Omega \\
& \mathbf{R}_{2}=\frac{13 \times 7}{13+6+7}=3.5 \Omega \\
& \mathbf{R}_{3}=\frac{7 \times 6}{13+6+7}=1.6154 \Omega
\end{aligned}
$$

Problem 5: Using Star-delta transformation, find an equivalent resistance between A and B for the network shown.

$$
R_{A B}=6.7143| | 8.667=\frac{6.7143 \times 8667}{6.7143+8.667}=3.7833 \Omega
$$

Problem 6: Find equivalent resistance at $A B$ terminals in Figure.

Convert $\mathbf{3 0} \Omega$ upper delta to star.

Each resistance of equivalent star is $\frac{30 \times 30}{30+30+30}=10 \Omega$

Problem 7: The network shown consists of two star connected circuits in parallel. Obtain the single delta connected equivalent.

$$
\begin{aligned}
& Z_{1} \| Z_{1}{ }^{1}=\frac{(-20+20 j)(20-20) j}{-20+20 j+20-20 j}=\infty \text { open circuit } \\
& Z_{2} \| Z_{2}{ }^{1}=\frac{(\mathbf{1 0 + 1 0 j})(\mathbf{1 0}+\mathbf{1 0} \boldsymbol{j})}{\mathbf{1 0 + 1 0 j + 1 0 + 1 0 j}}=5+5 j \\
& Z_{3} \| Z_{3}{ }^{1}=\frac{(\mathbf{1 0}+\mathbf{1 0} \boldsymbol{j})(\mathbf{1 0}+\mathbf{1 0} \boldsymbol{j})}{\mathbf{1 0 + 1 0 j}+\mathbf{1 0}+\mathbf{1 0} \boldsymbol{j}}=5+5 j
\end{aligned}
$$

Problem 8: Find the equivalent resistance between the terminal A and B in the network shown in figure. Using star-delta transformation.

$$
\begin{aligned}
& \mathbf{R}_{1}=\frac{15 X 8}{15+8+5}=4.2857 \Omega \\
& \mathbf{R}_{2}=\frac{15 \times 5}{15+8+5}=2.6785 \Omega \\
& \mathbf{R}_{3}=\frac{5 \times 8}{15+8+5}=1.4285 \Omega
\end{aligned}
$$

Problem 9: Using star-delta transformation, determine the resistance between M and N of the network shown.

$\mathrm{R}_{M N}=1+1.4256=2.4256 \Omega$

Problem 10: Obtain delta connected equivalent of the network shown.

It is clear that Z_{C} and 10Ω are in parallel. Hence

$$
Z_{C}=Z_{C} \quad| | 10=\frac{(-7.5+5 j)(10)}{-7.5+5 j+10}=\frac{(-7.5+5 j)(10)}{2.5+5 j}
$$

$$
=16.1245 \angle 82.87=(2+16 \mathrm{j}) \Omega
$$

Loop Analysis

For branch B-E, polarities of voltage drops will be $B+v e, E-v e$ for current I_{1} while $\mathrm{E}+\mathrm{ve}, \mathrm{B}$-ve for current I_{2} flowing through R3.

While writing loop equations, assume main loop current as positive and remaining loop current must be treated as negative for common branches.

Loop equations for the network are

For loop A-B-E-F-A,

$$
-I_{1} \mathbf{R}_{1}-I_{1} \mathbf{R}_{3}+I_{2} \mathbf{R}_{3}+V_{1}=0
$$

Points to remember for Loop analysis

1. While assuming loop currents make sure that at least one loop current links with every element.
2. No two loops must be identical.
3. Choose minimum number of loop currents.
4. Convert current sources if present, into their equivalent voltage sources for loop analysis, whenever possible.
5. If current in a particular branch is required, then try to choose loop current in such a way that only one loop current links with branch.

Steps for Loop analysis

1. Choose the various loops.
2. Show the various loop currents and the polarities of associated voltage drops.
3. Before applying KVL, look for any current source. Analyse the branch consisting current source independently and express the current source value interms of assumed loop currents. Repeat this for all the current sources.
4. After the step 3, apply KVL to those loops, which do not include any current source. A loop cannot be defined through current source from KVL point of view. Follow the sign convention.
5. Solve the equations obtained in step 3 and step 4 simultaneously, to obtain required unknowns.

Problem 1: For the circuit shown, find the current through 30Ω resistance using mesh analysis.

Apply KVL to the various loops,
Loop 1, $\quad-15 \mathrm{I}_{1}-20 \mathrm{I}_{1}+20 \mathrm{I}_{2}+100=0$

$$
+35 \mathrm{I}_{1}-20 \mathrm{I}_{2}=100
$$

Loop 2, $-5 \mathrm{I}_{2}-30 \mathrm{I}_{2}+30 \mathrm{I}_{3}-20 \mathrm{I}_{2}+20 \mathrm{I}_{1}=0$

$$
20 \mathrm{I}_{1}-55 \mathrm{I}_{2}+30 \mathrm{I}_{3}=0
$$

Loop 3,

$$
\begin{aligned}
-5 \mathrm{I}_{3}-100-30 \mathrm{I}_{3}+30 \mathrm{I}_{2} & =0 \\
30 \mathrm{I}_{2}-35 \mathrm{I}_{3} & =100
\end{aligned}
$$

Solving, $\mathrm{I}_{2}=-1.6 \mathrm{~A}$ and $\mathrm{I}_{3}=-4.2285 \mathrm{~A}$
$\therefore \quad \mathrm{I}_{30 \Omega}=\mathrm{I}_{2}-\mathrm{I}_{3}=-1.6-(-4.2285)=2.6285 \mathrm{~A} \downarrow$

Problem 2: Write the mesh equation for the circuit shown in figure. And determine mesh currents using mesh analysis.

Due to the current source, before applying KVL, analyse the branch consisting of current source and express current source in terms of assumed loop currents.

$$
I_{1}=10 \text { A ---------- (1) }
$$

Apply KVL to the loops without current source, Loop B-C-F-G-B, $-2 I_{2}+2 I_{3}-10-3 I_{2}+3 I_{1}=0$

From equation (1),

$$
\begin{equation*}
-5 I_{2}+2 I_{3}=-20- \tag{2}
\end{equation*}
$$

Loop C-D-E-F-C, $\quad-3 I_{3}+10-2 I_{3}+2 I_{2}=0$

$$
\begin{equation*}
2 I_{2}-5 I_{3}=-10 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& -5 I_{2}+2 I_{3}=-20---------(2) \\
& 2 I_{2}-5 I_{3}=-10---------(3) \\
& D=\left|\begin{array}{cc}
-5 & 2 \\
2 & 5
\end{array}\right|=|25-4|=21 \\
& D 2=\left|\begin{array}{cc}
-20 & 2 \\
-10 & -5
\end{array}\right|=|100-(-20)|=120 \\
& D 3=\left|\begin{array}{cc}
-5 & -20 \\
2 & -10
\end{array}\right|=|-40-50|=90 \\
& \mathbf{I}_{\mathbf{1}}=10 \mathrm{~A}, \quad \mathbf{I}_{\mathbf{2}}=5.7142 \mathrm{~A}, \quad \mathbf{I}_{\mathbf{3}}=4.2857 \mathrm{~A}
\end{aligned}
$$

Problem 3: Find the voltage across resistance R in the network shown by mesh analysis.

20Ω
Loop1, $-10 I_{1}-2 I_{1}+2 I_{2}+5=0$
$-12 I_{1}+2 I_{2}=-5$
Loop 2, $-10 I_{2}-2 I_{2}+2 I_{3}-20 I_{2}-2 I_{2}+2 I_{1}=0$
$2 I_{1}-34 I_{2}+2 I_{3}=0$
Loop 3, $-10 I_{3}+10-2 I_{3}+2 I_{2}=0$
$2 I_{2}-12 I_{3}=-10$
Solving, $\boldsymbol{I}_{\mathbf{1}}=0.429 \mathrm{~A}, \quad \boldsymbol{I}_{\mathbf{2}}=0.075 \mathrm{~A}, \quad \boldsymbol{I}_{\mathbf{3}}=0.8458 \mathrm{~A}$
Current through $\mathrm{R}=I_{R}=I_{3}-I_{2}=0.7708 \mathrm{~A} \mathrm{î}$
Voltage across $\mathrm{R}=I_{R} \mathrm{R}=0.7708 \times 2=1.5416 \mathrm{~V}$

Problem 4: Find the current through 4Ω resistor using loop current method.

Solving, $\quad D_{2}=0$
$I_{2}=\frac{D_{2}}{D}=0 A=$ current through 4Ω

$D=\left|\begin{array}{ccc}5+j 2 & -j 2 & 0 \\ j 2 & -4 & -j 2 \\ 0 & j 2 & 2-j 2\end{array}\right|=-84+j 24$
and $\quad D_{2}=\left|\begin{array}{ccc}5+\mathrm{j} 2 & 50 \angle 0^{\circ} & 0 \\ \mathrm{j} 2 & 0 & -\mathrm{j} 2 \\ 0 & 26.25 \angle-66.8^{\circ} & 2-\mathrm{j} 2\end{array}\right|$

$$
=-\mathrm{j} 2(2-\mathrm{j} 2) 50 \angle 0^{\circ}+\mathrm{j} 2(5+\mathrm{j} 2)\left(26.25 \angle-66.8^{\circ}\right)
$$

$$
\begin{array}{ll}
\text { Loop1, } & -5 I_{1}-2 j I_{1}+2 j I_{2}+50 \angle 0=0 \\
& (5+2 j) I_{1}-2 j I_{2}=-50 \angle 0------ \tag{1}
\end{array}
$$

$$
\begin{align*}
& \text { Loop 2, }-4 I_{2}-(-2 \mathrm{j})+(-2 \mathrm{j})-\mathbf{2 j} I_{2}+\mathbf{2 j} I_{1}=02 \mathrm{j} I_{1}- \\
& 4 I_{2}-2 j I_{3}=0 \tag{2}
\end{align*}
$$

Loop 3, $-2 I_{3}+26.25 \angle-66.8-(-2 j)+(-2 j) I_{2}=0$
$2 \mathrm{j} I_{2}+(2-2 \mathrm{j}) I_{3}=26.25 \angle-66.8$

Problem 4: Using mesh current analysis determine the voltage across AB.

Loop1, $-6 I_{1}+6 I_{3}-30-15 I_{1}+15 I_{2}-3 I_{1}-12=0$
$-24 I_{1}+15 I_{2}+6 I_{3}=42$
Loop 2, $-30 I_{2}+30 I_{3}+54-9 I_{2}-15 I_{2}+15 I_{1}+30=0$

$$
\begin{equation*}
15 I_{1}-54 I_{2}+30 I_{3}=-84 \tag{2}
\end{equation*}
$$

Loop 3, $-20-30 I_{3}+30 I_{2}-6 I_{3}+6 I_{1}=0$

$$
\begin{equation*}
6 I_{1}+30 I_{2}-36 I_{3}=20 \tag{3}
\end{equation*}
$$

Solving, $\boldsymbol{I}_{\mathbf{1}}=0.119 \mathrm{~A}$,
$I_{2}=2.4 \mathrm{~A}$,
$I_{3}=1.468 \mathrm{~A}$

Problem 5: For the network given determine value of i.

Loop1, $\quad-0.5 I_{1}-I_{1}+I_{3}-0.5 I_{1}+0.5 I_{2}-0.5+2=0$
$2 I_{1}-0.5 I_{2}-I_{3}=1.5$

Loop 2, $-I_{2}+I_{3}-2+0.5-0.5 I_{2}+0.5 I_{1}=0$
$0.5 I_{1}-1.5 I_{2}+I_{3}=1.5$
Loop 3, $-2 I_{3}-I_{3}+I_{2}-I_{3}+I_{1}=0$
$I_{1}+I_{2}-4 I_{3}=0$
Solving, $\boldsymbol{I}_{\mathbf{1}}=0.46 \mathrm{~A}$,

$$
\begin{equation*}
I_{2}=-0.923 \mathrm{~A}, \quad I_{3}=-0.115 \mathrm{~A} \tag{3}
\end{equation*}
$$

MODULE-3
 Transient Behavior and Initial
 Conditions

By

K PRABHAVATHI
Assistant Professor
Department of ECE
BGSIT, BG NAGARA

Contents

$>$ Behavior of circuit elements under switching condition and their Representation
> Evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations.

Transient Response

When a network is switched from one condition to another by change in applied voltage or by change in one of the circuit elements, during the period of time, the branch currents and voltages change from their former values to new one. This time interval is called transient period.

The response or output of network during transition period is called transient response of network.

Initial Conditions

Initial Conditions in Elements

- While solving problems on networks, using integro-differential equations in mathematics, initial conditions are always given and the job of the mathematician is to find the solution using the given initial conditions.
- Knowing the values of the voltages and currents of the elements at $t=0^{-}$, finding these values at $t=0^{+}$, constitutes the evaluation of initial conditions.

Initial conditions of the elements in the network must be known to evaluate arbitrary constants in the general solution of differential equation. In the analysis of network behavior of elements individually and in combinations is studied with initial conditions.

Initial Conditions in Elements

1. The Resistor

- When a voltage V is applied across the resistance R by closing the switch K , the current through R is given by

$$
i_{R}=\frac{V}{R}
$$

This equation indicates that the current through the resistor R changes instantaneously. Hence, in a resistor, the current changes instantaneously and the energy is dissipated as heat and it does not store any energy.

$$
t=0^{-}
$$

Initial Conditions in Elements

1. The Inductor

- When a voltage V is applied across the an inductor of inductance L henrys, the voltage across the inductance is given by,

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

If the current flowing through the inductor is DC , then $\frac{d i_{L}}{d t}=0$. Hence the voltage across the inductor is zero. Hence, under steady state conditions, the inductor acts as a short circuit.

The current through the inductance is given by:

$$
i={\underset{L}{L}}_{1}^{\int_{-\infty}^{t} v} d t={\underset{L}{L}}_{1}^{\int_{-\infty}^{0-} v} d t+\int_{L}^{1} \int_{0-}^{t} v d t \ldots . . \mathrm{eq}(1)
$$

The first term in the RHS of above equation represents the initial value of Current through the inductor before closing the switch i,e $i_{L}(0-)$.

Initial Conditions in Elements

- When the switch is closed at $\mathrm{t}=0$, the equation (1) can be written as

$$
{ }_{L}(0+)=i_{L}(0-)+{\underset{L}{ } \int_{0-}^{1} v_{L}}_{0+} d t \ldots \ldots \ldots . \text { eq(2) }
$$

It is assumed that the switching operation does not consume any time. Thus the integration from 0 - to $0+$ is zero.

$$
i_{L}(0+)=i_{L}(0-)
$$

Thus the current through an inductor cannot change instantaneously. This means that the current through the inductor before and after a switching operation is the same.

Hence, at $\mathrm{t}=0+$, the inductor acts as an O.C, if it does not carry any initial current. If the inductor carries an initial current I_{0} before a switching operation, then immediately after the switching operation i.e. at $\mathrm{t}=0+$, it acts as a current source of I_{0}.

Initial Conditions in Elements

1. The capacitor

- The current through the capacitance is given by,

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

If a DC voltage is applied, $\frac{v_{C}}{d t}=0$ and hence $\dot{\varepsilon}=0$. Hence, under steady state conditions, capacitance acts as an O.C. Hence, under steady state conditions, the capacitance acts as an O.C.

The voltage across the capacitance is given by:
$v={ }_{c}^{1}{ }_{C}^{t} \int_{-\infty}^{t} i \quad d t={ }_{-}^{1} \int_{-\infty}^{0-} i d t+{ }_{-}^{1} \int_{0-}^{t} i d t \ldots \ldots e q(3)$

$$
\frac{1}{C} \int_{-\infty}^{0-} i_{C} d t=v_{C}(0-), \text { which is constant }
$$

Initial Conditions in Elements

- When the switch K is closed at $t=0$, the equation (3) may be written as

$$
v_{c}(0+)=v_{c}(0-)+\frac{1}{c} \int_{0-}^{0+} i_{C} d t=v(0-)+0
$$

Therefore

$$
v_{C}(0+)=v_{C}(0-)
$$

Thus the voltage across the capacitor can not change instantaneously.

Hence, if a capacitor does not have any initial charge at $\mathrm{t}=0-$, then at $\mathrm{t}=0+$ also, its voltage will be zero.

Thus, the capacitor acts as S.C. at $\mathrm{t}=0+$. If at $\mathrm{t}=0-$, the capacitor has an initial voltage of V_{0}, then at $\mathrm{t}=0+$, it acts as a voltage source of V_{0}.

Procedure for finding the initial conditions

1. The initial values of voltages and currents i.e. before closing the switch at $t=0$ - , can be found directly from the schematic diagram of the given network.
2. For each element of the network, we must find out , what happens to the element at $t=0+$, i.e. after closing the switch.
3. A new equivalent network $t=0+$ is constructed as per the following rules:

- Replace all the inductors by open circuits or current sources having values of current flowing at $\mathrm{t}=0$-.
- Replace all the capacitors by short circuits or voltage sources of q0/C , if there is any initial charge.
- Resistors are left in the network without any change.

4. From the network at $t=0+$, first the initial values of voltages and current are solved.
5. After closing the switch, the general equation of the circuit is written.
6. By substituting the initial conditions, the initial condition of the first order derivative is found.
7. The general equation is differentiated again and by substituting the initial conditions, the initial conditions of the second order derivative can be found.

Behaviour of the circuit elements under switching conditions
$t=0$ is the reference time when switch is operated, to differentiate time immediately before and after switching we use $t=0$ - and $t=0+$.
The time at final condition is considered as at $\mathrm{t}=\infty$

Note 4

$$
\begin{gathered}
Q=c v \\
\frac{d Q}{d t}=\frac{d v}{d t} \\
i=c \frac{d v}{d t} \\
v=\frac{1}{c} \int i d t
\end{gathered}
$$

Problem1: In the network of figure, the switch K is closed at $\mathrm{t}=0$, with the capacitor uncharged. Find values for $\mathrm{i},-\& d \overline{t^{2}}$ at $\mathrm{t}=0+$ for element values as follows $\mathrm{v}=100 \mathrm{v}$, $R=1000$ ohms and $c=1 \mu F$.

Solution :
At t=0+

$$
\begin{aligned}
i(t) & =\frac{v}{R} \\
i(0+) & =\frac{v}{R} \\
& =\frac{100}{1000} \\
i(0+) & =0.1 A
\end{aligned}
$$

$$
\begin{gathered}
v-R i(t)-\frac{1}{c} \int(t) \mathrm{dt}=0 \\
\text { Diff w.r.t } \mathbf{t}^{\prime} \\
0-\frac{R d i(t)}{d t}-\frac{1}{c} i(t)=0 \ldots . . e(1) \\
\frac{R d i(0+)}{d t}=-\frac{1}{c} i(t) \\
\frac{d i(0+)}{d t}=-1_{R^{\prime} c^{i}}{ }^{i}(0+) \\
\frac{d i(0+)}{d t}=-1000 i(0+) \\
\frac{d i(0+)}{d t}=-1000 \times 0.1 \\
\frac{d i(0+)}{d t}=-100 \mathrm{~A} / \mathrm{Sec}
\end{gathered}
$$

Diff equation 1 w. r.t ' t '

$$
-\mathrm{R} \frac{d^{2} i(t)}{d t^{2}}-\frac{1}{c} \frac{d i}{d t}(t)=0
$$

$$
\frac{d^{2} i(0+)}{d t^{2}}=-\frac{1}{R} \frac{d i(0+)}{d t}
$$

$$
=-1000 \times(-100)
$$

$$
\frac{d^{2} i(0+)}{d t^{2}}=100000 \mathrm{~A} / \sec ^{2}
$$

Problem 2: In the circuit given, the voltage across capacitor is previously uncharged. Find $\mathrm{i}(0+), \frac{d i(0+)}{d t} \& \frac{d^{2} i(0+)}{d t^{2}}$. The switch K is closed at $\mathrm{t}=0$.

Solution :
At $\mathrm{t}=0+$

At $t>0$

$$
\begin{aligned}
& 10-1(t)-L \frac{d i(t)}{d t}-\frac{1}{c} \int i(t) d t=0 \ldots e(1) \\
& 10-10 i\left(0^{+}\right)-L \frac{d i\left(0^{+}\right)}{d t}-\frac{1}{c} \int i\left(0^{+}\right) d t=0
\end{aligned}
$$

$$
10-0-L \frac{d i\left(0^{+}\right)}{d t}-0=0
$$

$$
\begin{gathered}
10-L \frac{d i(0+)}{d t}=0 \\
\frac{d i(0+)}{d t}=\frac{10}{1}=10 \mathrm{~A} / \mathrm{Sec}
\end{gathered}
$$

Diff equation (1) w. r.t 't'

$$
\begin{gathered}
0-\frac{10 d i}{d t}(t) \\
-\frac{10 d i\left(0^{+}\right)}{d t}-L \frac{d^{2} i}{d t^{2}}-\frac{d^{2} i\left(0^{+}\right)}{d t^{2}}-\frac{1}{c} i(t) d t=0 \\
L \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=-\frac{10 d i\left(0^{+}\right)}{d t} \\
L \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=-10 \times 10=-100 \\
\frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=-100 \mathrm{~A} / \mathrm{sec}^{2}
\end{gathered}
$$

Problem 3 : In the network given , K is changed from position A to B. Solve for $i(0+)$, $\frac{d i(0+)}{d t} \& \frac{d^{2} i(0+)}{d t^{2}}$, circuit reached steady stat $(t=\infty)$ in position A.

$$
\mathrm{V}=100 \mathrm{v}, \mathrm{c}=0.1 \mu \mathrm{~F}, L=1 \mathrm{H}, R=1000 \mathrm{ohms}
$$

Solution :
At $t=0^{-}$steady state at A

$$
\begin{aligned}
& i\left(0^{-}\right)=\frac{100}{1000} \\
& i\left(0^{-}\right)=0.1 \mathrm{~A}
\end{aligned}
$$

Prior to the switch change to position B, the current through inductor is 0.1 A and voltage across $\mathrm{c}=0$

$$
\text { At } t=0+
$$

$$
\text { At } t>0
$$

$$
-\frac{1}{c} \int i(t) d t-\mathbb{R}(t)-L \frac{d i(t)}{d t}=0
$$

$$
\begin{aligned}
& -\frac{1}{c} \int i\left(0^{+}\right) d t-\mathbb{R}\left(0^{+}\right)-L \frac{d i\left(0^{+}\right)}{d t}=0 \ldots \ldots e(1) \\
& 0-0.1(1000)-1 \frac{d i\left(0^{+}\right)}{d t}=0 \\
& \frac{d i\left(0^{+}\right)}{\boldsymbol{d t}}=-100 \mathrm{~A} / \mathrm{Sec}
\end{aligned}
$$

Diff equation (1) w. r.t ${ }^{\prime} \mathbf{t}^{\prime}$

$$
\begin{gathered}
-\frac{1}{c} i\left(0^{+}\right)-\frac{R d i\left(0^{+}\right)}{d}-L \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=0 \\
-\frac{1}{0.1 \mu}(0.1)-1000(-100)=L \frac{d^{2} i\left(0^{+}\right)}{d t^{2}} \\
\frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=-9 \times 10^{5} \mathrm{~A} / \mathrm{sec}^{2}
\end{gathered}
$$

Problem 4 : In the network shown, switch is moved from position 1 to 2 at $\mathbf{t}=\mathbf{0}$. The steady state have been reached before switching. Calculate $\mathrm{i}(0+), \frac{d i(0+)}{d t} \& \frac{d^{2} i(0+)}{d t^{2}}$.

Solution:
At $t=0^{-}$

$$
\begin{aligned}
& i\left(0^{-}\right)=0 \\
& V_{c}=40 v
\end{aligned}
$$

$$
A t t=0^{+}
$$

At $t>0$

$$
\begin{gathered}
-\frac{1}{c} \int i(t) d t-R(t)-L \frac{d i}{d t}(t)=0 \\
-40-20(0)-1 \frac{d i(t)}{d t}=0 \\
\frac{d i(t)}{d t}=-40 \mathrm{~A} / \mathrm{Sec}
\end{gathered}
$$

Diff equation (1) w. r.t 't'

$$
\begin{gathered}
-\frac{1}{-i}(t)-R \frac{d}{d t}-\frac{L d^{2} i(t)}{d t^{2}}=0 \\
-20(-40)=1 \cdot \frac{d^{2} i(t)}{d t^{2}}
\end{gathered}
$$

$$
\frac{d^{2} i\left(0^{+}\right)}{d t^{2}}=800 \mathrm{~A} / \sec ^{2}
$$

Problem 5: In the network given ,steady state is reached with switch is closed at t= 0, switch is open. Determine $\mathrm{i}(0+), \frac{d i(0+)}{d t}, \vartheta_{k}\left(0^{+}\right), \frac{d v_{k}\left(0^{+}\right)}{d t}$.

$$
\text { at } \quad t=0^{-}
$$

$$
\begin{aligned}
& i\left(0^{-}\right)=2 A \\
& V_{c}=0 v
\end{aligned}
$$

$$
\begin{gathered}
i\left(0^{+}\right)=2 A \\
V_{k}\left(0^{+}\right)=0 v=V\left(0^{+}\right)
\end{gathered}
$$

$$
\begin{gathered}
4-\frac{1}{c} \int i\left(0^{+}\right) d t-R\left(0^{+}\right)-L \frac{d i\left(0^{+}\right)}{d t}=0 \\
-4-0-2 * 2-L \frac{d i\left(0^{+}\right)}{d t}=0 \\
4-4-2 \frac{d i\left(0^{+}\right)}{d t}=0 \\
\frac{d i\left(0^{+}\right)}{d t}=0 \mathrm{~A} / \mathrm{Sec}
\end{gathered}
$$

$$
\begin{gathered}
V_{c}=\frac{1}{c} \int i d t \\
\frac{d v}{d t}=\frac{1}{c} i\left(0^{+}\right) \\
\frac{d v_{k}}{d t}=\frac{2}{1 * 10^{-6}} \\
=2 * 10^{6} v / \mathrm{sec}
\end{gathered}
$$

Problem 6: In the given network, switch is opened at $\mathrm{t}=\mathbf{0}$, after the network has attained the steady state with switch closed. Find the expression for voltage across the switch at $t=0+$, if the parameters are such that $i\left(0^{+}\right)=1 A$ and $\frac{d i\left(0^{+}\right)}{d t}=-\frac{1 A}{s e c}$. What is the value of derivative of the voltage across the switch.

$$
\begin{gathered}
i\left(0^{+}\right)=\frac{V}{R_{2}} \\
v_{k}\left(0^{+}\right)=i\left(0^{+}\right) * R_{1} \\
v_{k}\left(0^{+}\right)=\frac{V}{R_{2}} * R_{1}
\end{gathered}
$$

$$
\begin{aligned}
& V_{k}=V_{R_{1}}+V_{c} \\
& V_{k}=i(t) R_{1}+\frac{1}{c} \int i(t) d t \\
& \frac{d V_{k}}{d t}=\frac{d i(t)}{d t} R_{1}+\frac{1}{c}(t) \\
& \frac{d V_{k}}{d t}=-R_{1}+\frac{1}{c}(1) \\
& \frac{d V_{k}}{d t}=\frac{1}{c}-R_{1}
\end{aligned}
$$

Problem 7 : In the circuit given , switch k is open at $t=0$, Determine $v\left(0^{+}\right), \frac{d v\left(0^{+}\right)}{d t}, \frac{d^{2} v\left(0^{+}\right)}{d t^{2}}$ and given $R=100$ ohm, $L=1 H$

Since switch is closed no current flows in inductor $i_{L}=0$.

$$
\begin{aligned}
v\left(0^{+}\right) & =I R \\
& =1 * 100 \\
& =100 \mathrm{v}
\end{aligned}
$$

$$
\begin{gathered}
-I_{1}-I_{2}-I_{3}=0 \\
-(-1)-\frac{v(t)}{R}-\frac{1}{L} \int v(t) d t=0 \ldots . e q(1)
\end{gathered}
$$

Diff equation (1) w.r.t ' t '

$$
\begin{gathered}
0-\frac{d v(t)}{d t} \cdot \frac{1}{R}-\frac{1}{L} v(t)=0 \ldots \ldots \ldots e q(2) \\
\frac{d v(t)}{d t} \cdot \frac{1}{R}=-\frac{1}{L} v(t) \\
\frac{d v(t)}{d t}=-\frac{R}{L} v(t) \\
=-100(100) \\
\frac{d v(t)}{d t}=-10000=-10^{4} \mathrm{v} / \mathrm{sec}
\end{gathered}
$$

Diff equation w.r.t ${ }^{\prime} t^{\prime}$

$$
\frac{d^{2} v(t)}{d t^{2}} \cdot \frac{1}{R}+\frac{1}{L} \frac{d v(t)}{d t}=0
$$

$$
\frac{d^{2} v(t)}{d t^{2}}=-\frac{R}{L}\left(-10^{4}\right)
$$

$$
=-100\left(-10^{4}\right)
$$

$$
\frac{d^{2} v(t)}{d t^{2}}=10^{6} v / \sec ^{2}
$$

Problem 8 : In the circuit given, switch K is open at $\mathrm{t}=0$. Find $v_{1}\left(0^{+}\right)$and $v_{2}\left(0^{+}\right)$and $\frac{d v_{1}\left(0^{+}\right)}{d t}$ and $\frac{d v_{2}\left(0^{+}\right)}{d t}$.

Solution :

At $t=0^{-}$

$$
\text { at } t=0^{-}
$$

no current flows in Copacitor

$$
v_{1}=0 \quad v_{2}=0
$$

$$
\begin{gathered}
v_{1}\left(0^{+}\right)=10 * 10=100 v \\
v_{2}\left(0^{+}\right)=0 v
\end{gathered}
$$

$$
\begin{aligned}
& -I_{1}-I_{2}-I_{3}=0 \\
& -(-10)-\frac{v_{1}}{v_{1}} 10-\left[v_{1}-\frac{v_{2}}{L}\right]=0 \\
& 10 \text { - } \\
& \overline{1_{1}}-\frac{-}{L} \int v_{1} d t=0 \\
& -10+\frac{\left.v_{2}\right)^{t}}{10}+\int_{L}^{1} v_{1} d t=0 \ldots \ldots . . \text { eq (1) }
\end{aligned}
$$

Diff Eq (1)

$$
\begin{gathered}
0+\frac{d v_{1}\left(0^{+}\right)}{d t} \cdot \frac{1}{10}+1 \cdot v_{1}\left(0^{+}\right)=0 \\
\frac{d v_{1}\left(0^{+}\right)}{d t} \cdot \frac{1}{10}=-100 \\
\frac{d v_{1}\left(0^{+}\right)}{d t}=-100 * 10=-1000 \mathrm{v} / \mathrm{sec}
\end{gathered}
$$

$$
\frac{d v_{2}(t)}{d t}=0
$$

Problem 9: In the given network, switch K dis $_{1}$ open, steady state is reached at $\mathrm{t}=0$, switch is closed.
Find $I_{1}, I_{2}, \frac{d I_{1}}{d t}, \frac{d l_{2}}{d t}$ at $t=0^{+}$, also find $\frac{d l_{1}}{d t}$ at $t=\infty$.

Solution :

$$
\begin{gathered}
i_{2}=\emptyset \\
i_{1}=\frac{100}{30}=3.33 \mathrm{~A}
\end{gathered}
$$

$$
\begin{aligned}
& V_{c}=20 * i=20 * 3.33 \mathrm{~A} \\
& V_{c}=66.6 \mathrm{v}
\end{aligned}
$$

at $t=0+$.

$$
\begin{gathered}
i\left(0^{+}\right)=3.33 A \\
i\left(0^{+}\right)=100-\frac{66.6}{20}=1.67 A
\end{gathered}
$$

$$
\begin{aligned}
& 100=i_{1}(t) 20+\frac{L d i_{1}(t)}{d t} \\
& 100=i_{1}\left(o^{+}\right)^{20}+\frac{d i_{1}(t)}{d t} \\
& \frac{d i_{1}(t)}{d t}=33.4 \mathrm{~A} / \mathrm{Sec} \\
& 100=i_{2}(t) 20+\frac{1}{c} \int i_{2}(t) d t \\
& 0=\frac{d i_{2}}{}(t) \quad \frac{d t}{d t} 20+\frac{1}{c} i_{2}(t) \\
& \frac{d i_{2}(t)}{d t} 20+\frac{1.67}{1 \mu}=0 \\
& \frac{d i_{2}\left(0^{+}\right)}{d t} 20=-\frac{1.67}{1 \mu} \\
& \frac{d i_{2}\left(0^{+}\right)}{d t}=-83.5 * 10^{-3} \mathrm{~A} / \mathrm{Sec}
\end{aligned}
$$

$$
\begin{gathered}
100-20 i_{1}(\infty)=0 \\
i_{1}(\infty)=\frac{100}{20}=5 \\
0-\frac{20 d i_{1}(\infty)}{d t}=0 \\
\frac{d i_{1}(\infty)}{d t}=0
\end{gathered}
$$

Problem 10 : In the circuit given, switch K is closed at $\mathrm{t}=0$, determine $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \frac{d i_{1}}{d t}, \frac{d i_{2}}{d t}$ at $\boldsymbol{t}=\mathbf{0}^{+}$condition.

Solution:
at $\quad t=0^{-}$

$$
\begin{aligned}
& i_{1}=0 \\
& i_{2}=0 \\
& v_{c}=0
\end{aligned}
$$

$$
\begin{gathered}
i_{2}\left(0^{+}\right)=0 \\
i_{1}\left(0^{+}\right)=\frac{v_{0} \operatorname{Sinw} t}{R}
\end{gathered}
$$

$$
\begin{aligned}
V_{0} \operatorname{Sinw} t & =i_{2}(t) R+\frac{L d i_{2}(t)}{d t} \\
& =0 \\
V_{0} \operatorname{Sin} w t & =i_{2}\left(0^{+}\right) R+\frac{L d i_{2}(t)}{d t} \\
\frac{d i_{2}(t)}{d t} & =\frac{V_{0} \operatorname{Sinwt}}{L}
\end{aligned}
$$

$$
\begin{aligned}
& V_{0} \operatorname{Sin} w t=i_{1}(t) R+\frac{1}{c} \int i_{1}(t) d t \\
& w V \cos w t=\frac{d i_{1}(t)}{d t} \cdot R+\frac{1}{c} i_{1}(0) \\
& 0 \\
& w V_{0} \cos w t=\frac{d i_{1}\left(0^{+}\right)}{d t} \cdot R+\frac{1}{c} i_{1}\left(0^{+}\right) \\
& \frac{d i_{1}\left(0^{+}\right)}{d t}=\left[w V_{0} \cos w t-\frac{V_{0} \operatorname{Sin} w t}{\mathrm{RC}}\right] \cdot \frac{1}{\mathrm{R}} \\
& \frac{d i_{1}\left(0^{+}\right)}{d t}=\left[\frac{w V_{0} \cos w t}{R}-\frac{V_{0} \operatorname{Sin} w t}{\mathrm{R}^{2} \mathrm{C}}\right] \cdot \frac{1}{\mathrm{R}}
\end{aligned}
$$

Problem 11: In the given network, switch K is open at $\mathrm{t}=\mathbf{0}$. Determine the voltage across the switch at $\boldsymbol{t}=\mathbf{0}^{+}$, before steady state is reached.

Solution:

$v_{c_{1}}=\left[\frac{v}{R_{1}+R_{2}+R_{3}}\right] \cdot R_{2}$
$v_{c_{3}}=\left[\frac{v}{R_{1}+R_{2}+R_{3}}\right] \cdot R_{3}$

At $t=0^{+}$

$$
v_{c_{1}}=\left[\frac{v}{R_{1}+R_{2}+R_{3}}\right] \cdot R_{2}
$$

$$
v_{k}\left(0^{+}\right)=\frac{v R_{3}}{R_{1}+R_{2}+R_{3}}
$$

Problem 12: In the network given, the switch was in position A and steady state was reached at $t=0$, the switch is changed to position B. Determine $\boldsymbol{i}_{1}\left(0^{+}\right), \boldsymbol{i}_{2}\left(0^{+}\right), \boldsymbol{i}_{3}\left(0^{+}\right)$

Solution :

$$
\begin{aligned}
& \boldsymbol{v}_{\boldsymbol{c}_{\mathbf{1}}}\left(\mathbf{0}^{-}\right)=0 \\
& \boldsymbol{v}_{\boldsymbol{c}_{2}}\left(\mathbf{0}^{-}\right)=0 \\
& \boldsymbol{v}_{\boldsymbol{c}_{3}}\left(\mathbf{0}^{-}\right)=\mathrm{v}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{i}_{\mathbf{1}}\left(\mathbf{0}^{-}\right)=0 \\
& \boldsymbol{i}_{\mathbf{2}}\left(\mathbf{0}^{-}\right)=0 \\
& \boldsymbol{i}_{3}\left(\mathbf{0}^{-}\right)=0
\end{aligned}
$$

$$
i_{3}\left(0^{+}\right)=0
$$

$$
\boldsymbol{i}_{2}\left(\mathbf{0}^{+}\right)=\boldsymbol{i}_{1}\left(0^{+}\right)
$$

$$
i_{2}\left(0^{+}\right)=-\frac{v}{R_{1}+R_{2}+R_{3}}=\dot{\mathbf{4}}(0)
$$

MODULE-4
 Laplace Transformation \& Applications

Contents

$>$ Solution of networks
> Step, ramp and impulse responses
$>$ waveform Synthesis.

Laplace Transform

Laplace Transform

- The Laplace transform, named after its inventor Pierre-Simon Laplace is an integral transform that converts a function of a real variable t (often time) to a function of a complex variable s (complex frequency).
- It is very much suitable for obtaining solution of higher order differential equations.
- Mathematical Expression is given by

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t .
$$

Standard Time Signals

- Impulse function
- Step function
- Ramp function

Standard Time Signals

1. Impulse function

- Exists only at $\mathrm{t}=0$ and is zero elsewhere.
- Also called as Dirac-delta function denoted by $\delta(t)$

$$
\delta(t)= \begin{cases}1 & t=0 \\ 0 & t \neq 0\end{cases}
$$

Laplace transform of Impulse function

$$
\begin{aligned}
& L[\delta(t)]=\int_{0}^{\infty} \delta(t) e^{-s t} d t \\
& L[\delta(t=0)]=\left.1 * e^{-s t}\right|_{t=0} \\
& L[\delta(t)]=e^{-s 0} \\
& L[\boldsymbol{\delta}(\boldsymbol{t})]=\mathbf{1}
\end{aligned}
$$

Note: Differentiation of unit step function results in impulse function

$$
\begin{aligned}
& \delta(t)=\frac{d}{d t}[u(t)] \\
& L[\delta(t)]=L\left[\frac{d}{d t}[u(t))\right] \\
&=\operatorname{li} 4\left[\frac{d}{d t} u(t)\right]
\end{aligned}=\operatorname{sL[u(t)]-u(t)|_{t=0^{-}}} \begin{aligned}
& =\beta \times \frac{1}{8}-0 \\
L\left[\frac{d}{d t} u(t)\right] & =1 \\
\langle L[\delta(t)] & =1\rangle
\end{aligned}
$$

Standard Time Signals

2. Step function

- Value of the function change from one value to another.
- The change may take place at $\mathrm{t}=0$ or any other time.
- It is denoted by $u(t)$.

$$
u(t)= \begin{cases}\mathbf{0}, & t<0 \\ A, & t \geq 0\end{cases}
$$

Unit Step function

- Is one whose magnitude is equal to 1

0,

$$
\boldsymbol{t}_{\{ }<\boldsymbol{0} \boldsymbol{u}(t)=\underset{t \geq 0}{ }
$$

Standard Time Signals

Laplace transform of Step function

$$
\begin{gathered}
L[u(t)]=\int_{0}^{\infty} u(t) e^{-s t} d t \\
L[u(t)]=\left.\frac{e^{-s t}}{-s}\right|_{0} ^{\infty} \\
L[u(t)]=-\frac{1}{s}[0-1] \\
L[\boldsymbol{u}(\boldsymbol{t})]=\frac{1}{\boldsymbol{s}}
\end{gathered}
$$

Standard Time Signals

3. Ramp function

- A ramp signal has a slop value for $t \geq 0$, otherwise it has zero value.
- The change may take place at $\mathrm{t}=0$ or any other time.
- It is denoted by $\mathrm{r}(\mathrm{t})$.

$$
r(t)=\left\{\begin{array}{lc}
\mathbf{0}, & t<\mathbf{0} \\
\text { At, } & t \geq \mathbf{0}
\end{array}\right.
$$

Where A is slope of the function

Unit Ramp function

- Is one which has unity slope value for $t \geq 0$

$$
\mathbf{r}_{(t)}=\left\{\begin{array}{l}
\mathbf{0}, \quad t<\mathbf{0} \\
\boldsymbol{t}, \\
t \geq 0
\end{array}\right.
$$

Standard Time Signals

Laplace transform of Ramp function

$$
\begin{aligned}
& L[r(t)]=\int_{0}^{\infty} t u(t) e^{-s t} d t \\
& L[r(t)]=\int_{0}^{\infty} t * 1 * e^{-s t} d t \\
& L[r(t)]=\left.t \frac{e^{-s t}}{-s}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{e^{-s t}}{-s} * 1 d t \\
& L[r(t)]=\frac{1}{s}(0-0)-\frac{e^{-s t}}{s^{2}} 0 \\
& L[r(t)]=-\frac{1}{s^{2}}(0-1) \\
& L[\boldsymbol{r}(\boldsymbol{t})]=\frac{\mathbf{1}}{\boldsymbol{s}^{2}}
\end{aligned}
$$

Relations between Standard Time Signals

$$
\int u(t) d t=t=r(t) \underbrace{\overbrace{\longleftrightarrow}^{r(t)}}_{0} r(t)=t
$$

Shifting Theorem

Shifting Theorem

- Used to obtain Laplace transform of shifted functions.
- Consider a function $f(t)$. Let this function be delayed by ' T ' time units.
- It can be represented as $f(t-T) u(t-T)$.
- If $\mathrm{F}(\mathrm{s})$ is the Laplace Transform of $\mathrm{f}(\mathrm{t})$
- Then sifting theorem is defined as

Proof

$$
L[f(t-T) u(t-T)]=e^{-s T} F(s)
$$

As the function is shifted by T, lower limit is also shifted to T

$$
\begin{array}{cc}
L[f(t-T) u(t-T)]=\int_{T}^{\infty} f(t-T) u(t-T) e^{-s t} d t & L[f(t-T) u(t-T)]=\int_{c=0}^{\infty} f(r) u(r) e^{-s(c+T)} d r \\
L e t r=t-T & L[f(t-T) u(t-T)]=\int_{c=0}^{\infty} f(r) u(r) e^{-s c} e^{-s T} d r \\
t=T, r=0 & L[f(t-T) u(t-T)]=e^{-s T} \int_{c=0}^{\infty} f(r) u(r) e^{-s c} d r \\
t=\infty, r=\infty & L[\boldsymbol{f}(\boldsymbol{t}-\boldsymbol{T}) \boldsymbol{u}(\boldsymbol{t}-\boldsymbol{T})]=\boldsymbol{e}^{-s T} \boldsymbol{F}(\boldsymbol{S})
\end{array}
$$

Laplace Transform of Standard Functions

Laplace Transform of Standard Functions

Some Important Laplace Transform

$f(t)$	fis)	$f(t)$	fs)
1	$\frac{1}{s}$	$e^{-\alpha t} \sin \omega t$	ω
			$(s+a)^{2}+w^{2}$
constant K	$\frac{1}{s}$	$e^{-a t} \cos \omega t$	$(5+a)$
t	1		$\overline{(s+a)^{2}+\alpha^{2}}$
	\bar{s}	$\sin h \omega t$	$\frac{\omega}{s^{2} 0^{2}}$
t^{n}	$n!$		$\frac{s^{2}-\omega^{2}}{s}$
	s^{n+1}	coshot	$\frac{s}{s^{2}-\omega^{2}}$
$e^{\text {-at }}$	$\frac{1}{(s+a)}$	de-at	1
en	$\overline{(s-a)}$	$1-e^{-a t}$	a
$e^{-a t} t^{n}$	$n!$		${ }_{\omega}^{5+a}$
e^{-a}	$(s+a)^{n+1}$	sin ω t	$\overline{s^{2}+\omega^{2}}$
$\cos \omega t$	$\frac{s}{s}$		

Waveform Synthesis Using Standard Time Signals

Problem1: Find the Laplace Transform of the given function.

Solution

$$
\begin{aligned}
& f(t)=f_{1}(t)+f_{2}(t) \\
& f(t)=10 u(t)-10 u\left(t-t_{1}\right) \\
& F(s)=\frac{10}{s}-\frac{10}{s} e^{-s t_{1}}
\end{aligned}
$$

Problem2: Find the Laplace Transform of the given function.

Solution

$$
F(s)=\frac{3}{s} e^{-s}-\frac{3}{s} e^{-2 s}
$$

Problem3: Obtain the Laplace Transform of the given waveform

Solution

$$
f_{1}(t)=\frac{A}{T} r(t)
$$

$$
f_{3}(t)=-A u(t-T)
$$

$$
f(t)=f_{1}(t)+f_{2}(t)+f_{3}(t)
$$

$$
f(t)=\frac{A}{T} r(t)-\frac{A}{T} r(t-T)-A u(t-T)
$$

$$
F(\mathbf{s})=\frac{\mathrm{A}}{T \mathrm{~s}^{2}}-\frac{A}{T s^{2}} e^{-s T}-\frac{A}{s} e^{-s T}
$$

$$
F(\mathrm{~s})=\frac{\mathrm{A}}{\mathrm{~T} \mathrm{~s}^{2}}\left(1-e^{-s T}-s e^{-s T}\right)
$$

Problem4: Obtain the Laplace Transform of the given waveform

$$
f(t)=f_{1}(t)+f_{2}(t)+f_{3}(t)
$$

$$
f(t)=10 u(t)-20 u\left(t-t_{1}\right)+10 u\left(t-t_{2}\right)
$$

$$
\begin{aligned}
& F(s)=\frac{10}{s}-\frac{20}{s} e^{-s t_{1}}+\frac{1}{s} e^{-s t_{2}} \\
& F_{(s)}=\frac{10}{s}\left(1-2 e^{-s t 1}+e^{-s t 2}\right)
\end{aligned}
$$

Problem5: Obtain the Laplace Transform of the given waveform

$$
\begin{aligned}
& f(t): 10 u(t)+10 u\left(t-t_{1}\right)-10 u\left(t-t_{2}\right)-10 u\left(t-t_{3}\right) \\
& \left\langle F(s)=\frac{10}{s}+\frac{10}{s} e^{-s t_{1}}-\frac{10}{s} e^{-s t_{2}}-\frac{10}{s} e^{-5 t_{3}}\right\rangle
\end{aligned}
$$

Problem6: Obtain the Laplace Transform of the given waveform

$$
f_{1}(t)=\frac{10}{t y_{2}} r(t)=\frac{20}{t_{1}} \gamma(t) .
$$

$$
f_{2}(t)=\frac{-10}{t_{1} / 2} \gamma\left(t-t_{1 / 2}\right)=\frac{-20}{t_{1}} \gamma\left(t-t_{1 / 2}\right.
$$

$$
f_{3}(t)=-\frac{20}{t_{1}} r(t-t 1 / 2)
$$

$$
f_{4}(t)=\frac{20}{t_{1}} r\left(t-t_{1}\right)
$$

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{3}(t)+f_{4}(t) \\
& =\frac{20}{t_{1}} r(t)-\frac{20}{t_{1}} r\left(t-t_{1 / 2}\right)-\frac{20}{t_{1}} r\left(t-t_{1 / 2}\right)+\frac{20}{t_{1}} r\left(t-t_{1}\right) \\
& =\frac{20}{t_{1}} r(t)-\frac{40}{t_{1}} r\left(t-t_{1 / 2}\right)+\frac{20}{t_{1}} r\left(t-t_{1}\right) \\
\langle F(s) & \left.=\frac{80}{t_{1} s^{2}}-\frac{40}{t_{1} s^{2}} \cdot e^{-s t_{1 / 2}}+\frac{20}{t_{1} s^{2}} \times e^{-s t_{1}}\right\rangle
\end{aligned}
$$

Problem7: Obtain the Laplace Transform of the given waveform

$$
\begin{aligned}
f(t) & =\frac{30}{t_{1}} r(t)-5 u\left(t-t_{1}\right)-\frac{30}{t_{1}} r\left(t-t_{0}\right)-25 u\left(t-t_{2}\right) \\
\langle F(s) & =\frac{30}{t_{1} s^{2}}-\frac{5}{s} e^{-s t_{1}}-\frac{30}{t_{1} s^{2}} e^{-s t_{1}}-\frac{25}{s} e^{-s t_{2}} .
\end{aligned}
$$

Problem8: Obtain the Laplace Transform of the given waveform

$$
\begin{aligned}
& f(t)=\frac{1}{a} r(t)-\frac{1}{a} r(t-a)-\frac{1}{a} r(t-3 a)+\frac{1}{a} r(t-4 a) \\
& \left\langle F(s)=\frac{1}{a s^{2}}-\frac{1}{a s^{2}} e^{-s a}-\frac{1}{a s^{2}} e^{-s 3 a}+\frac{1}{a s^{2}} e^{-s 4 a}\right\rangle
\end{aligned}
$$

Laplace Transform Of Periodic Function

- Laplace transform of the periodic function with period T is $\frac{\mathbf{1}}{\mathbf{1}-\boldsymbol{e}^{-\boldsymbol{s} \boldsymbol{T}}}$ times the Laplace transform of the first cycle.

Proof
Let $f(t)$ is the periodic function of time period ' T '
Let $f_{1}(t), f_{2}(t), f_{3}(t)$ be the function describing the first, second, third cycle etc.

$$
\begin{aligned}
& f(t)=f_{1}(t)+f_{2}(t)+f_{3}(t)+\ldots \ldots \\
& f(t)=f_{1}(t)+f_{1}(t-T)+f_{1}(t-2 T)+\ldots \ldots \\
& F(s)=F_{1}(S)+F_{1}(S) e^{-s T}+F_{1}(S) e^{-2 s T}+\ldots \\
& F(s)=F_{1}(S)\left(1+e^{-s T}+e^{-2 s T}+\ldots . .\right)
\end{aligned}
$$

According To Geometric Series $\quad\left(1+e^{-s T}+e^{-2 s T}+\ldots.\right)=\frac{1}{1-e^{-s T}}$

$$
F(s)=F_{1}(S) \frac{1}{1-e^{-s T}}
$$

Problem1: Synthesis the waveform shown and find the Laplace Transform of the periodic waveform.

Consider the first cycle from 0 to T

$$
\begin{gathered}
f_{a}(t)=\frac{2}{T} r(t) \\
f_{b}(t)=-\frac{2}{T} r(t-T / 2) \\
f_{c}(t)=-\frac{1}{T / 2} r(t-T / 2) \\
f_{c}(t)=-\frac{2}{T} r(t-T / 2) \\
f_{d}(t)=\frac{2}{T} r(t-T)
\end{gathered}
$$

$$
\begin{aligned}
f_{1}(t) & =f_{a}(t)+f_{b}(t)+f_{d}(t)+f_{d}(t) \\
& =\frac{2}{T} r(t)-\frac{2}{T} r(t-T / 2)-\frac{2}{T} r(t-T / 2)+\frac{2}{T} r(t-T) \\
\left\{f_{1}(s)\right. & \left.=\frac{2}{s^{2} T}-\frac{4}{s^{2} T} e^{-s T / 2}+\frac{2}{s^{2} T} e^{-s T}\right\} \\
f(s) & =\frac{f_{1}(s)}{1-e^{-T s}}=\frac{\frac{2}{T s^{2}}\left[1-2 e^{-s T / 2}+e^{-s T}\right]}{1-e^{-s T}}
\end{aligned}
$$

Problem2: Synthesis the waveform shown and find the Laplace Transform of the periodic waveform.

Solution

Consider the first cycle from 0 to $2 T$

$$
\begin{aligned}
f_{a}(t) & =u(t) \\
f_{b}(t) & =-2 u(t-T) \\
f_{c}(t) & =u(t-2 T)
\end{aligned}
$$

$$
\begin{aligned}
f_{1}(t) & =u(t)-2 u(t-T)+u(t-2 T) \\
& =\frac{1}{s}-\frac{2}{s} e^{-s T}+\frac{1}{s} e^{-s 2 T} \\
F_{1}(s) & =\frac{1}{s}\left[1-e^{-s T}+e^{-2 s T}\right] \\
F(s) & =\frac{\frac{1}{s}\left[1-e^{-s T}+e^{-2 s T}\right]}{1-e^{-2 s T}}
\end{aligned}
$$

Problem3: Synthesis the waveform shown and find the Laplace Transform of the periodic waveform.

Solution

Consider the first cycle from 0 to 4T

$$
\begin{aligned}
& f_{1}(t)=\frac{10}{T} r(t)-\frac{10}{T} r(t-T)+10 u(t-2 T)-\frac{20}{2 T} r(t-2 T)+\frac{20}{2 T} r(t-4 T) \\
& F_{1}(s)=\frac{10}{T s^{2}}-\frac{10}{T s^{2}} e^{-s T}+\frac{10}{s} e^{-2 s T}-\frac{20}{2 T s^{2}} e^{-2 s T}+\frac{20}{2 T s^{2}} e^{-4 s T} \\
& \left.F(s)=\frac{F_{1}(s)}{1-e^{-4 s T}}\right\rangle
\end{aligned}
$$

Problem4: Synthesis the waveform shown and find the Laplace Transform of the periodic waveform.

Solution

Consider the first cycle from 0 to π

$$
\begin{aligned}
& f_{1}(t)=10 \sin \omega t+10 \sin \omega(t-\pi) \\
& F_{1}(s)=10 \times \frac{\omega}{s^{2}+\omega^{2}}+\frac{10 \times \omega}{s^{2}+\omega^{2}} e^{-s \pi} \\
& F(s)=\frac{f_{1}(s)}{1-e^{-s \pi}} \\
& F(s)=\frac{10 \omega}{s^{2}+\omega^{2}}\left[\frac{1+e^{-s \pi}}{1-e^{-s \pi}}\right]
\end{aligned}
$$

Initial Value Theorem

- It states that the initial value of time function $f(t)$ is obtained from its Laplace transform as given below.

$$
f\left(o^{+}\right)=\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

- The only restriction is $f(t)$ must be continuous.

Proof

Consider the Laplace transform of the differentiation function

$$
L\left[\frac{d}{d t}(f(t))\right]=s F(s)-f\left(0^{-}\right)
$$

Taking limit as $s \rightarrow \infty$ on both sides

$$
\lim _{s \rightarrow \infty} L\left[\frac{d}{d t}(f(t))\right]=\lim _{s \rightarrow \infty}\left[s F(s)-f\left(0^{-}\right)\right] \ldots e(1)
$$

Consider L.H.S of equation 1.

$$
\begin{aligned}
& \lim _{s \rightarrow \infty} L\left[\frac{d}{d t}(f(t))\right]=\lim _{s \rightarrow \infty} \int_{0}^{\infty} e^{-s t} \frac{d}{d t}(f(t)) d t \\
& \lim _{s \rightarrow \infty} L\left[\frac{d}{d t}(f(t))\right]=0
\end{aligned}
$$

\therefore R.H.S $=0$ in eq(1)

$$
\begin{aligned}
& 0=\lim _{s \rightarrow \infty}\left[s F(s)-f\left(0^{-}\right)\right] \\
& 0=\lim _{s \rightarrow \infty}[s F(s)]-\left(0^{-}\right) \\
& \left(0^{-}\right)=\lim _{s \rightarrow \infty}[s F(s)]
\end{aligned}
$$

But as the function $f(t)$ is continuous

$$
f\left(0^{-}\right)=\left(0^{+}\right) \quad \text { i.e., the initial value of } f(t)
$$

$$
f\left(o^{+}\right)=\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

Problem1: Find the initial value of $F(s)=\frac{4 s+5}{(s+1)(s+3)}$
Solution

$$
\begin{aligned}
& s F(s)=\frac{(4 s+5)}{(s+1)(s+3)} \\
& f\left(o^{+}\right)=\lim _{s \rightarrow \infty} s F(s) \\
& f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{(4 s+5)}{(s+1)(s+3)} \\
& f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{s *(4+5 / s)}{s\left(1+\frac{1}{s}\right)\left(1+\frac{3}{s}\right) s} \\
& f\left(o^{+}\right)=4
\end{aligned}
$$

Problem2: Find the initial value of $F(s)=\frac{s+1}{(s+1)^{2}+3^{2}}$
Solution

$$
\begin{gathered}
s F(s)=\frac{(s+1)}{(s+1)^{2}+3^{2}} \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} s F(s) \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{(s+1)}{(s+1)^{2}+3^{2}} \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{s *(s+1)}{\left(s^{2}+2 s+1\right)+3^{2}} \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{s *(1+1 / s)}{s^{2}\left[\left(1+\frac{2}{s}+\frac{1}{s^{2}}\right)+\frac{3^{2}}{s^{2}}\right]} \\
f\left(o^{+}\right)=1
\end{gathered}
$$

Problem3: Find the initial value of $F(s)=\frac{A(a+s) \sin \theta+\mathrm{Q} \cos \theta}{(s+a)^{2}+\mathrm{Q}^{2}}$

Solution

$$
\begin{aligned}
& s F(s)=\frac{s[A(\alpha+s) \sin \theta+\beta \cos \theta]}{(s+\alpha)^{2}+\beta^{2}} \\
& f\left(o^{+}\right)=\lim _{s \rightarrow \infty} s F(s) \\
& f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{s A(\alpha+s) \sin \theta+\beta \cos \theta}{(s+\alpha)^{2}+\beta^{2}} \\
& f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{s A * s\left[\left(\frac{\alpha}{s}+1\right) \sin \theta+\beta \cos \theta / s\right]}{\left(s^{2}+2 \alpha s+\alpha^{2}\right)+\beta^{2}} \\
& f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{s A * s\left[\left(\frac{\alpha}{s}+1\right) \sin \theta+\beta \cos \theta / s\right]}{s^{2}\left[\left(1+\frac{2 \alpha}{s}+\frac{\alpha^{2}}{s^{2}}\right)+\frac{\beta^{2}}{s^{2}}\right]} \\
& f\left(o^{+}\right)=\mathrm{A} \sin \theta
\end{aligned}
$$

Problem4: Find the initial value of $F(s)=\frac{10}{s+2}-\frac{4}{s+3}$

Solution

$$
\begin{gathered}
s F(s)=\mathrm{s}\left[\frac{10}{s+2}-\frac{4}{s+3}\right] \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} s F(s) \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} s\left[\frac{10}{s+2}-\frac{4}{s+3}\right] \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{s}{s}\left[\frac{10}{1+2 / s}-\frac{4}{1+3}\right] \\
f\left(o^{+}\right)=10-4=6
\end{gathered}
$$

Problem5: Find the initial value of $f(t)=2 e^{-3 t}$

Solution

$$
\begin{gathered}
F(s)=\frac{2}{s+3} \\
s F(s)=\frac{2 s}{(s+3)} \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} s F(s) \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{2 s}{(s+3)} \\
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} \frac{2 s}{(1+3 / s)} \\
f\left(o^{+}\right)=2
\end{gathered}
$$

Final Value Theorem

- It allows to find the final values $f(\infty)$ from its Laplace transform and is given by

$$
f(\infty)=\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

Proof

Consider the Laplace transform of the differentiation function

$$
L\left[\frac{d}{d t}(f(t))\right]=s F(s)-f(0)
$$

Taking limit as $s \rightarrow 0$ on both sides

$$
\begin{aligned}
& \lim _{s \rightarrow 0} L\left[\frac{d}{d t}(f(t))\right]=\lim _{s \rightarrow 0}[s F(s)-f(0)] \\
& \lim _{s \rightarrow 0} \int_{0}^{\infty} e^{-s t} \frac{d}{d t}(f(t)) d t=\lim _{s \rightarrow 0}[F(s)-f(0)] \\
& \quad \int_{0}^{\infty} e^{-(0)} \frac{d}{d t}(f(t)) d t=\lim _{s \rightarrow 0}[s F(s)]-f(0) \\
& \int_{0}^{\infty} 1 \cdot \frac{d}{d t}(f(t)) d t=\lim _{s \rightarrow 0}[s F(s)]-f(0)
\end{aligned}
$$

$$
\begin{aligned}
& \left.f(t)\right|_{0} ^{\infty}=\lim _{s \rightarrow 0}[s F(s)]-f(0) \\
& f(\infty)-(0)=\lim _{s \rightarrow 0}[s F(s)]-f(0) \\
& f(\infty)=\lim _{s \rightarrow 0}[s F(s)]
\end{aligned}
$$

$$
f(\infty)=\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0}[s F(s)]
$$

Problem 1: Find the final value of $F(s)=\frac{s+6}{s(s+3)}$
Solution

$$
\begin{gathered}
s F(s)=\frac{(s+6)}{s(s+3)} \\
f(\infty)=\lim _{s \rightarrow 0} s(s) \\
f(\infty)=\lim _{s \rightarrow 0} \frac{(s+6)}{s(s+3)} \\
f(\infty)=\frac{6}{3}=2
\end{gathered}
$$

Problem 2: Find the final value of $F(s)=\frac{s+5}{s(s+1)(s+3)}$
Solution

$$
\begin{aligned}
s F(s) & =\frac{s(s+5)}{(s+1)(s+3)} \\
f(\infty) & =\lim _{s \rightarrow 0} s(s) \\
f(\infty)=\lim _{s \rightarrow 0} & \frac{s(s+5)}{(s+1)(s+3)} \\
f(\infty) & =\frac{5}{3}
\end{aligned}
$$

Problem 3: Find the final value of $F(s)=\frac{0.32}{\left(s^{2}+2.4 s+0.672\right) s}$
Solution

$$
\begin{gathered}
s F(s)=\frac{\mathrm{s} * 0.32}{\left(\mathrm{~s}^{2}+2.4 \mathrm{~s}+0.672\right) \mathrm{s}} \\
f(\infty)=\lim _{s \rightarrow 0} s(s) \\
f(\infty)=\lim _{s \rightarrow 0} \frac{\mathrm{~s} * 0.32}{\left(\mathrm{~s}^{2}+2.4 \mathrm{~s}+0.672\right) \mathrm{s}} \\
f(\infty)=\frac{0.32}{0.672}=0.476
\end{gathered}
$$

Problem 4: Find the initial and final value of circuit given. (take I $(0)=1 A$)

Solution

Apply KVL to the loop

$$
\begin{aligned}
& 10 u(t)-1 * i(t)-2 \frac{d i(t)}{d t}=0 \\
& 10 u(t)=1 * i(t)+2 \frac{d i(t)}{d t}
\end{aligned}
$$

Take Laplace Transform on both sides

$$
\begin{aligned}
& \frac{10}{s}=I(s)+2[s I(s)-I(0)] \\
& \frac{10}{s}=I(s)+2[s I(s)-1]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{10}{s}=I(s)+2 s I(s)-2 \\
& \frac{10}{s}+2=I(s)(1+2 s) \\
& I(s)=\left(\frac{10}{s}+2\right)\left(\frac{1}{1+2 s}\right) \\
& s I(s)=s\left(\frac{10}{s}+2\right)\left(\frac{1}{1+2 s}\right)
\end{aligned}
$$

Initial Value

$$
\begin{gathered}
f\left(o^{+}\right)=\lim _{s \rightarrow \infty} s F(s) \\
i\left(o^{+}\right)=\lim _{s \rightarrow \infty} s I(s)=\lim _{s \rightarrow \infty} s\left(\frac{10}{s}+2\right)\left(\frac{1}{1+2 s}\right) \\
i\left(o^{+}\right)=\lim _{s \rightarrow \infty} s I(s)=\lim _{s \rightarrow \infty} s\left(\frac{10}{s}+2\right)\left(\frac{1}{\frac{1}{S}+2}\right)\left(\frac{1}{S}\right) \\
i\left(o^{+}\right)=\frac{2}{2}=1
\end{gathered}
$$

Final Value

$$
\begin{aligned}
& i(\infty)=\lim _{s \rightarrow 0} s(s) \\
& i(\infty)=\lim _{s \rightarrow 0} s\left(\frac{10}{s}+2\right)\left(\frac{1}{1+2 s}\right) \\
& i(\infty)=\lim _{s \rightarrow 0} s\left(\frac{(10+2 S)}{S}\right)\left(\frac{1}{1+2 s}\right) \\
& i(\infty)=10
\end{aligned}
$$

Network Analysis Using Laplace Transform

Elements	Time Domain	Laplace Domain
Resistor	$V(t)=I(t) R$	$V(s)=I(s) R$
Inductor	$v_{L}(t)=\frac{L d i(t)}{d t}$	$V_{L}(s)=L[s I(s)-i(0)]$
Capacitor	$v_{c}(t)=\frac{1}{C} \int_{0}^{t} i(t) d t+V_{c}(0)$	$V_{C}(s)=\frac{1}{C}\left[\frac{I(s)}{s}\right]+\frac{V_{c}(0)}{s}$

Solve for Circuit Quantities Using Laplace Transform

Problem 1: In the circuit shown, the switch is closed at $t=0$, calculate the expression of the resulting current.

Solution

$$
i\left(0^{-}\right)=0 A
$$

Apply KVL to the loop

$$
\begin{gathered}
v-R * i(t)-L \frac{d i(t)}{d t}=0 \\
v=R * i(t)+L \frac{d i(t)}{d t}
\end{gathered}
$$

Take Laplace Transform on both sides

$$
\begin{gathered}
\frac{v}{s}=R I(s)+L[s I(s)-I(0)] \\
\frac{v}{s}=R I(s)+L[s I(s)-0] \\
\frac{v}{s}=I(s)[R+s L] \\
I(s)=\frac{v}{s(R+s L)} \\
I(s)=\frac{v / L}{s(R / L+s)}
\end{gathered}
$$

Using partial fractions

$$
\begin{equation*}
I_{(} s^{\prime}=\frac{A}{s}+\frac{B}{\frac{R}{L}+s} \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
I_{(s)}=\frac{A}{s}+\frac{B}{\frac{R}{L}+s} \ldots . e(1) \\
\frac{\underline{v}}{s\left(\frac{R}{L}+s\right)}=\frac{A\left(s+\frac{R}{L}\right)+B(s)}{s\left(s+\frac{R}{L}\right)} \\
\frac{v}{L}=A\left(s+\frac{R}{L}\right)+B(s) \ldots . e(2)
\end{gathered}
$$

$$
\text { Put } s=-\frac{R}{L} \text { in eq (2) }
$$

$$
\frac{v}{L}=A\left(-\frac{R}{L}+\frac{R}{L}\right)+B\left(-\frac{R}{L}\right)
$$

$$
\frac{v}{L}=0+B\left(-\frac{R}{L}\right)
$$

$$
B=\frac{-v}{R}
$$

Put $s=0$ in eq (2)

$$
\begin{gathered}
\frac{v}{L}=A\left(0+\frac{R}{L}\right)+(0) \\
A=\frac{v}{R}
\end{gathered}
$$

Substitute the value of A and B in eq (1)

$$
I(s)=\frac{v / R}{s}-\frac{v / R}{\frac{R}{L}+s}
$$

Take Inverse Laplace Transform on both sides

$$
\begin{aligned}
& i(t)=\left(\frac{\mathrm{v}}{\mathrm{R}}-\frac{\mathrm{v}}{\mathrm{R}} \mathrm{e}^{-\left(\frac{\mathrm{R}}{\mathrm{~L}}\right) \mathrm{t}}\right) \mathrm{u}(\mathrm{t}) \\
& i(t)=\frac{\mathrm{V}}{\mathrm{R}}\left(1-\mathrm{e}^{-\left(\frac{\mathrm{R}}{\mathrm{~L}}\right) \mathrm{t}}\right) u(t)
\end{aligned}
$$

Problem 2: For the circuit given, determine current when the switch is moved from position 1 to position 2 at $t=0$

Solution

At $t>0$

Apply KVL to the loop

$$
20-2 * i(t)-0.1 \frac{d i(t)}{d t}=0
$$

Take Laplace Transform on both sides

$$
\begin{aligned}
& \frac{20}{s}=\mathcal{R}(s)+0.1[\$(s)-I(0)] \\
& \frac{20}{s}=\mathcal{R}(s)+0.1[s I(s)-5]
\end{aligned}
$$

$$
\begin{gathered}
\frac{20}{s}=\mathcal{R}(s)+0.1[(s)]-0.5 \\
\frac{20}{s}+0.5=I(s)[2+0.1 s] \\
I(s)=\left(\frac{20}{s}+0.5\right)\left(\frac{1}{2+0.1 s}\right) \\
I(s)=\left(\frac{20+0.5 s}{s}\right)\left(\frac{1}{2+0.1 s}\right) \\
I(s)=\frac{0.5(40+s)}{0.1(20+s)} \\
I(s)=\frac{5(40+s)}{(20+s)}
\end{gathered}
$$

$$
5(40+s)=(20+s)+B(s) \ldots \mathrm{eq}(2)
$$

Using partial fractions

$$
\begin{gathered}
I(s)=\frac{A}{s}+\frac{B}{20+s} \cdots \ldots \mathrm{eq}(1) \\
\frac{5(40+s)}{(20+s)} s^{-1}+\frac{B}{20+s}
\end{gathered}
$$

Put $s=0$ in eq (2)

$$
\begin{gathered}
5(40+0)=(20+0)+B(0) \\
A=10
\end{gathered}
$$

$$
\text { Put } s=-20 \text { in eq (2) }
$$

$$
\begin{gathered}
5(40-20)=(20-20)+B(-20) \\
B=-5
\end{gathered}
$$

Substitute the value of A and B in eq (1)

$$
I(s)=\frac{10}{s}+\frac{-5}{20+s}
$$

Take Inverse Laplace Transform on both sides

$$
\begin{gathered}
i(t)=\left(10-5 \mathrm{e}^{(-20 \mathrm{t}}\right) u(t) \\
i(t)=5\left(2-\mathrm{e}^{-20 t}\right) u(t)
\end{gathered}
$$

Problem 3: A pulse voltage of 10 V magnitude and $5 \mu \mathrm{~s}$ duration is applied to the RL network as shown in figure. Find $\mathrm{i}(\mathrm{t})$

Solution

$$
v(t)=1 u(t)-10 u(t-5 \mu)
$$

Apply KVL to the loop

$$
\begin{gathered}
v(t)-2 * i(t)-\mathrm{p} u \quad \frac{d i}{d t}(t)=0 \\
10 u(t)-\mathbf{1} u(t-5 \mu)=2 * i(t)+10 \mu \frac{d i(t)}{d t}
\end{gathered}
$$

Take Laplace Transform on both sides

$$
\begin{gathered}
\frac{10}{s}-\frac{10 e^{-5 \mu s}}{s}=\mathcal{R}(s)+10 \mu[\hbar(s)-I(0)] \\
\frac{10}{s}-\frac{10 e^{-5 \mu s}}{s}=\mathcal{R}(s)+10 \mu[s I(s)-0] \\
\frac{10}{s}\left(1-e^{-5 \mu s}\right)=I(s)[2+10 \mu s]
\end{gathered}
$$

$$
I(s)=\frac{10}{s} \frac{\left(1-e^{-5 \mu s}\right)}{(2+10 \mu s)}
$$

$$
I(s)=\frac{10\left(1-e^{-5 \mu s}\right)}{s} \frac{(2+10 \mu s)}{(2)}
$$

$$
I(s)=\frac{10}{s} \frac{\left(1-e^{-5 \mu s}\right)}{10\left(\frac{2}{10 \mu}+s\right)}
$$

$$
I(s)=\frac{10^{6}}{s} \frac{\left(1-e^{-5 \mu s}\right)}{\left(\frac{10^{6}}{5}+s\right)}
$$

$$
I(s)=10^{6}\left(\frac{1}{s\left(\frac{10^{6}}{5}+s\right)}\right)\left(1-e^{-5 \mu s}\right)
$$

$$
I(s)=A(S)\left(1-e^{-5 \mu s}\right)
$$

$$
A(S)=10^{6} \frac{1}{s\left(\frac{10^{6}}{5}+s\right)}
$$

Solve for $A(s)$ using partial fractions

$$
\begin{array}{r}
A(S)=\frac{A}{s}+\frac{B}{\frac{10^{6}}{5}+\mathrm{s}} \ldots e(1) \\
10^{6} \frac{1}{s\left(\frac{10^{6}}{5}+s\right)}=\frac{A}{s}+\frac{B}{\frac{10^{6}}{5}+\mathrm{s}} \\
10^{6}=A\left(\frac{10^{6}}{5}+\mathrm{s}\right)+B(s) \ldots \mathrm{eq}(2)
\end{array}
$$

Put $s=0$ in eq (2)

$$
10^{6}=A\left(\frac{10^{6}}{5}+0\right)+B(0)
$$

$$
A=5
$$

$$
\begin{aligned}
& \text { Put } s=-\frac{10^{6}}{5} \text { in eq (2) } \\
& \qquad 10^{6}=A\left(\frac{10^{6}}{5}-\frac{10^{6}}{5}\right)+B\left(-\frac{10^{6}}{5}\right)
\end{aligned}
$$

$$
B=-5
$$

Substitute the value of A and B in eq (1)

$$
A(S)=\frac{5}{\mathrm{~s}}+\frac{-5}{\frac{10^{6}}{5}+\mathrm{s}}
$$

Substitute the value of $A(s)$ in the equation for I(s)

$$
\begin{aligned}
& I(s)=\left(\frac{5}{s}+\frac{-5}{\frac{10^{6}}{5}+\mathrm{s}}\right)\left(1-e^{-5 \mu s}\right) \\
& I_{(s)}=\frac{5}{s}-\frac{5}{s} e^{-5 \mu s}-\frac{5}{s+\frac{10^{6}}{5}}+\frac{5}{s+\frac{10^{6}}{5}} e^{-5 \mu s}
\end{aligned}
$$

Take Inverse Laplace Transform on both sides

$$
i(t)=5 u(t)-5 u(t-5 \mu)-5 u(t) e^{-\frac{10^{6}}{5} t}+5 u(t-5 \mu) e^{-\frac{10^{6}(t-5 \mu)}{5}}
$$

Problem 4: A voltage pulse of 10 V magnitude and $5 \mu \mathrm{~s}$ duration is applied to the RC network shown in figure. Find $i(t)$ if $R=10 \Omega$ and $C=0.05 \mu F$

Solution

$$
\begin{gathered}
v(t)=10 u(t)-10 u(t-5 \mu) \\
V(s)=\frac{10}{s}-\frac{10}{s} e^{-5 \mu s} \\
V(s)=\frac{10}{s}\left(1-e^{-5 \mu s}\right)
\end{gathered}
$$

Transform the circuit to s domain

$$
\begin{gathered}
(s)=\frac{V(s)}{R+\frac{1}{C s}} \\
I(s)=\frac{\frac{10}{s}\left(1-e^{-5 \mu s}\right)}{R+\frac{1}{C s}} \\
I(s)=\frac{\frac{10}{s}\left(1-e^{-5 \mu s}\right)}{\frac{R C s+1}{C s}}
\end{gathered}
$$

$$
\begin{aligned}
& I(s)=\frac{10 C s\left(1-e^{-5 \mu s}\right)}{(R C s+1)} \\
& I(s)=\frac{10 C\left(1-e^{-5 \mu s}\right)}{(R C s+1)}
\end{aligned}
$$

Divide both numerator and denominator by RC

$$
\left.\begin{array}{c}
I(s)=\frac{\frac{10}{R}\left(1-e^{-5 \mu s}\right)}{s+\frac{1}{R C}} \\
I(s)=\frac{10}{R}\left[\frac{1}{s+\frac{1}{R C}} \frac{-1}{s+\frac{1}{R C}} e^{-5 \mu s}\right.
\end{array}\right]
$$

Take Inverse Laplace Transform on both sides

$$
i(t)=\frac{10}{R} u(t) e^{-\frac{1}{R C^{t}}}-\frac{10}{R} u(t-5 \mu) e^{-\frac{1(t-5 \mu)}{R C}}
$$

Substitute $R=10 \Omega$ and $C=0.05 \mu \mathrm{~F}$

$$
i(t)=u(t) e^{-2 * 10^{6} t}-u(t-5 \mu) e^{-2 * 10^{6}(t-5 \mu)}
$$

Problem 5: In the circuit shown in figure, if the capacitor is initially charged to 1V, find an expression for $i(t)$, when the switch K is closed at $t=0$

$$
\begin{aligned}
& \left(\frac{1}{C s}+2+L s\right) I(s)=\frac{v(o)}{s} \\
& I(s)=\frac{\frac{(v)}{s}}{\frac{1}{\mathrm{Cs}}+2+\mathrm{Ls}}
\end{aligned}
$$

Solution
Apply KVL to the loop

$$
\begin{aligned}
& -\frac{1}{C} \int i(t) d t+v(0)-2 i(t)-L \frac{d i}{d t}(t) \\
& \frac{1}{d t}=0 \\
& \frac{1}{C} \int i(t) d t-v(0)+2 i(t)+L \frac{d i(t)}{d t}=0
\end{aligned}
$$

$$
I(s)=\frac{\frac{1}{s}}{\underline{\mathrm{z}}+2+\mathrm{s}}
$$

$$
I(s)=\frac{\frac{1}{s}}{\frac{2+2 \mathrm{~s}+\mathrm{s}^{2}}{\mathrm{~s}}}
$$

Take Laplace Transform on both sides

$$
\frac{1}{C s} I(s)-\frac{v(o)}{s}+2 I(s)+L s I(s)=0
$$

Take Inverse Laplace Transform on both sides

$$
i(t)=\sin (t) e^{-t}
$$

Problem 6: In series RL circuit shown, the source voltage $v(t)=50 \sin 250 t V$. Using Laplace Transform determine the current when the switch k is closed at $t=0$

Solution

$$
\begin{aligned}
& v(t)=50 \sin 250 t \\
& V(s)=50 * \frac{250}{s^{2}+250^{2}}
\end{aligned}
$$

$$
I(s)=\frac{12500}{\left(s^{2}+250^{2}\right)(2.5+(0.005))}
$$

Transform the circuit to s domain

$$
I(s)=\frac{12500}{\left(\mathrm{~s}^{2}+250^{2}\right)\left(\frac{2.5}{0.005}+s\right) 0.005}
$$

$$
I(s)=\frac{12500}{\left(\mathrm{~s}^{2}+250^{2}\right)(500+s) 0.005}
$$

$$
I(s)=\frac{2.5 * 10^{6}}{\left(\mathrm{~s}^{2}+250^{2}\right)(500+s)}
$$

$$
\begin{gathered}
0=A+B \quad \ldots . . \mathrm{eq}(3) \\
0=500 B+C \ldots . . \mathrm{eq}(4) \\
2.5 * 10^{6}=\mathrm{A} * 250^{2}+\mathrm{C} * 500 \ldots . . \mathrm{eq}(5)
\end{gathered}
$$

Using partial fractions

From eq(3)

$$
B=-A=-8
$$

From eq(4)

$$
C=-500 B=-500(-8)=4000
$$

$$
\frac{2.5 * 10^{6}}{\left(\mathrm{~s}^{2}+250^{2}\right)(500+s)}=\frac{\mathrm{A}}{\mathrm{~s}+500}+\frac{\mathrm{Bs}+\mathrm{C}}{\mathrm{~s}^{2}+250^{2}}
$$

$2.5 * 10^{6}=A\left(\mathrm{~s}^{2}+250^{2}\right)+(\mathrm{Bs}+\mathrm{C})(\mathrm{s}+500) \ldots \mathrm{eq}(2)$

Put $s=-500$ in eq (2)

$2.5 * 10^{6}=A\left((-500)^{2}+250^{2}\right)+(\mathrm{Bs}+\mathrm{C})(-500+500) \ldots \mathrm{eq}(2)$

$$
A=8
$$

$$
I(s)=\frac{8}{s+500}-\frac{8 s}{s^{2}+250^{2}}+\frac{4000}{250}\left(\frac{250}{s^{2}+250^{2}}\right)
$$

Multiply, separate the terms and equate

$$
2.5 * 10^{6}=A\left(s^{2}\right)+\mathrm{A}\left(250^{2}\right)+\left(B s^{2}+B s(500)+\mathrm{Cs}+(\mathrm{C} * 500)\right)
$$

$$
I(s)=\frac{8}{s+500}-\frac{8 s}{s^{2}+250^{2}}+16\left(\frac{250}{s^{2}+250^{2}}\right)
$$

$$
2.5 * 10^{6}=(A+B) s^{2}+s(500 B+C)+\left(A * 250^{2}+C * 500\right)
$$

Take Inverse Laplace Transform on both sides

$$
(t)=8 u(t) e^{-500 t}-8 \cos (250 t)+16 \sin (250 t)
$$

Problem 7: For the circuit shown in figure, find the voltage $V_{2}(t)$, when the switch is opened at $\mathrm{t}=0$. Assume all the initial conditions to be zero.

Solution

Transform the circuit to s domain

Apply KCL at node 1

$$
\begin{align*}
& \frac{V_{1}(s)}{\frac{1}{s}}+\frac{V_{1}(s)}{0.1}-\frac{10}{s}+\frac{V_{1}(s)-V_{2}(s)}{0.1}=0 \\
& s V_{1}(s)+10 V_{1}(s)+10 V_{1}(s)-10 V_{2}(s)=\frac{10}{s} \\
& \quad V_{1}(s)(s+20)-10 V_{2}(s)=\frac{10}{s} \ldots e(1) \tag{1}
\end{align*}
$$

Apply KCL at node 2

$$
\begin{aligned}
& \frac{V_{2}(s)}{\frac{1}{s}}+\frac{V_{2}(s)}{0.1}+\frac{V_{2}(s)-V_{1}(s)}{0.1}=0 \\
& s V_{2}(s)+10 V_{2}(s)+10 V_{2}(s)-10 V_{1}(s)=0 \\
& \quad-10 V_{1}(s)+V_{2}(s)(s+20)=0 \ldots . e(2)
\end{aligned}
$$

Solve for using V_{2} Cramer's rule

$$
\begin{gathered}
\Delta=\left|\begin{array}{cc}
s+20 & -10 \\
-10 & s+20
\end{array}\right| \\
\Delta=(s+20)^{2}-100 \\
\Delta=S^{2}+40 s+400-100 \\
\Delta=S^{2}+40 s+300 \\
\Delta_{2}=\left|\begin{array}{cc}
s+20 & \frac{10}{s} \\
-10 & 0
\end{array}\right| \\
\Delta_{2}=0+\frac{100}{s} \\
\Delta_{2}=\frac{100}{s}
\end{gathered}
$$

$$
V_{2}(s)=\frac{\Delta_{2}}{\Delta}=\frac{\frac{100}{s}}{s^{2}+40 s+300}
$$

$$
V_{2}(s)=\frac{100}{\left(s^{2}+40 s+300\right)}=\frac{100}{(s+30)(s+10)}
$$

Using partial fractions

$$
V_{2}(s)=\frac{A}{s}+\frac{B}{s+30}+\frac{C}{s+10} \ldots \mathrm{eq}(3)
$$

$$
\frac{100}{(s+30)(s+10)}=\frac{A}{s}+\frac{B}{s+30}+\frac{C}{s+10}
$$

$$
100=A(s+30)(s+10)+B(s+10)+C s(s+30) . . e(4)
$$

Put $s=0$ in eq (4)

$$
\begin{aligned}
& 100=A(0+30)(0+10)+0+0 \\
& \quad A=\frac{1}{3}
\end{aligned}
$$

Put $s=-30$ in eq (4)

$$
\begin{gathered}
100=0+(-30)(-30+10)+0 \\
B=\frac{1}{6}
\end{gathered}
$$

Put $s=-10$ in eq (4)

$$
\begin{aligned}
100 & =0+0+(-10)(-10+30) \\
C & =\frac{-1}{2}
\end{aligned}
$$

Substitute the value of A, B and C in eq (3)

$$
V_{2}(s)=\frac{1}{3 s}+\frac{1}{6(s+30)}-\frac{1}{2(s+10)}
$$

Take Inverse Laplace Transform on both sides

$$
V_{2}(t)=\frac{1}{-}(t)+\frac{1}{6} \mathfrak{Z}(t) e^{-30 t}-\frac{1}{-}(t) e^{-10 t}
$$

Problem 8: For the series RLC circuit shown in figure, the initial conditions are $\boldsymbol{i}_{L O}=$ $2 A$ and $V_{C O}=2 V$. It is connected to a DC voltage at $t=0$. Find the current $i(t)$ after the switching action, using Laplace Transform.

Solution

Transform the circuit to s domain

$$
\begin{gathered}
L s=1 * s=s \\
L i\left(0^{-}\right)=1 * 2=2 \mathrm{~V} \\
\frac{1}{C s}=\frac{1}{\left(\frac{1}{2}\right) s}=\frac{2}{\mathrm{~s}} \\
\frac{V_{c}\left(o^{-}\right)}{s}=\frac{2}{s}
\end{gathered}
$$

$$
\begin{gathered}
I(s)=\frac{\frac{5}{s}+2-\frac{2}{s}}{3+s+\frac{2}{s}} \\
I(s)=\frac{2 s+3}{s^{2}+3 s+2}=\frac{2 s+3}{(s+1)(s+2)}
\end{gathered}
$$

Using partial fractions

$$
\begin{gathered}
I(s)=\frac{A}{s+1}+\frac{B}{s+2} \ldots \mathrm{eq}(1) \\
\frac{2 s+3}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2}
\end{gathered}
$$

$$
2 s+3=A(s+2)+B(s+1) \ldots e(2)
$$

Put $s=-2$ in eq (2)

$$
\begin{gathered}
2(-2)+3=0+B(-2+1) \ldots e(2) \\
A=1
\end{gathered}
$$

Put $s=-1$ in eq (2)

$$
\begin{aligned}
2(-1)+3 & =A(-1+2)+0 \\
B & =1
\end{aligned}
$$

Substitute the value of A and B in eq (1)

$$
I(s)=\frac{1}{s+1}+\frac{1}{s+2}
$$

Take Inverse Laplace Transform on both sides

$$
i(t)=u(t) e^{-t}+u(t) e^{-2 t}
$$

Assignment: Deduce the Laplace Transform of the following

1. $\sin ^{2} t$
2. $\cos ^{2} t$
3. sinwt
4. $\int_{0}^{t} i(t) d t$

MODULE-2 NETWORK THEOREMS

By
K PRABHAVATHI
Assistant Professor Department of ECE BGSIT, BG Nagara

Contents

Superposition Theorem

Millman's Theorem

Thevinin's and Norton's Theorem

Maximum Power Transfer Theorem

Superposition Theorem

"If any multisource complex network consisting of linear bilateral elements, the voltage across or current through, any given element of the network is equal to the sum of the individual voltages or currents, produced independently across or in that element by each source acting independently, when all the remaining sources are replaced by their respective internal impedances.

> If the internal impedances of the sources are unknown then the independent voltage sources must be replaced by short circuit while the independent current sources must be replaced by an open circuit.

> If there are dependent current or voltage sources present in the circuit then such dependent sources should not be replaced by open or short circuit and must be kept as it is."

Steps to Apply Superposition Theorem

Step1: Select a single source acting alone. Short the other voltage sources and open the current sources, if internal impedances are not known. If known, replace them by their internal impedances.

Step2: Find the current through or the voltage across the required element, due to the source under consideration, using a suitable network simplification technique.

Step3: Repeat the above two steps for all the sources.
Step4: Add all the individual effects produced by individual sources, to obtain the total current in or voltage across the element.

Problem1: Find the voltage ' V ' across 3Ω resistor using superposition theorem for the circuit given.

Step1: Consider 6V alone, short 18V and open 2A.

$$
\begin{aligned}
I_{T} & =\frac{6}{1.5+3}=1.33 \mathrm{~A} \\
V^{\prime} & =3 I_{T}=4 \mathrm{~V}
\end{aligned}
$$

Step2: Consider 18V alone, short 6V and open 2A.

$$
I_{T}=\frac{18}{6+1.2}=2.5 \mathrm{~A}
$$

Applying Current division rule,

$$
\begin{aligned}
& I_{3}=I_{T} \times \frac{2}{2+3}=\frac{2.5 \mathrm{X} 2}{5}=1 \mathrm{~A} \\
& V^{\prime \prime}=3 I_{3}=3 \times 1=3 \mathrm{~V}
\end{aligned}
$$

Step3: Consider 2A alone, short 6V and short 18V.

Applying Current division rule,

$$
\begin{aligned}
& I_{3}=2 \times \frac{1.5}{3+1.5}=0.666 \mathrm{~A} \\
& V^{\prime \prime \prime}=-3 I_{3}=-3 \times 0.666=-2 \mathrm{~V}
\end{aligned}
$$

$$
V=V^{\prime}+V^{\prime \prime}+V^{\prime \prime \prime}=4+3-2=5 \mathrm{~V}
$$

VERIFICATION

$I_{2}=-2 A$

At loop1,

$$
\begin{aligned}
& I_{1}=-3.166 \mathrm{~A} \\
& I_{3}=-3.667 \mathrm{~A}
\end{aligned}
$$

$$
-6 I_{1}-2 I_{1}+2 I_{3}-18=0
$$

$$
\begin{equation*}
-8 I_{1}+2 I_{3}=18 \tag{1}
\end{equation*}
$$

$$
\boldsymbol{I}_{2^{-}} \boldsymbol{I}_{3}=-2+3.667=1.667 \mathrm{~A}
$$

At loop3,

$$
\begin{align*}
& -2 I_{3}+2 I_{1}-3 I_{3}+3 I_{2}-6=0 \\
& 2 I_{1}+3 I_{2}-5 I_{3}=6 \\
& 2 I_{1}+3(-2)-5 I_{3}=6 \\
& 2 I_{1}-5 I_{3}=12-\cdots----- \tag{2}
\end{align*}
$$

Problem2: Find the current in 5Ω resistors using superposition theorem.

Step1: Consider 12V only, short 20V and open 10A.

Applying KVL,
$-5 I_{y}-10 I_{y}-5 I_{y}+12=0$
$-20 I_{y}=-12$
$I_{y}=0.6 \mathrm{~A}$
$I_{y}=0.6$ A through both 5Ω resistances due to 12 V .

Step2: Consider 10A only, short 12V and 20V.

From the branch $A B$,

$$
\begin{equation*}
I_{2}-I_{1}=10 \tag{1}
\end{equation*}
$$

$I_{1}=I_{y}$
Applying KVL to the outer loop
$-5 I_{1}-10 I_{y}-5 I_{2}=0$
$-5 I_{1}-10 I_{1}-5 I_{2}=0$
$-15 I_{1}-5 I_{2}=0$
$I_{1}=-2.5 \mathrm{~A}$
$I_{2}=7.5 \mathrm{~A}$
The current through left 5Ω resistor is 2.5A due to 10 A
The current through right 5Ω resistor is 7.5 A

Step3: Consider 20v only, short 12V and open 10A.

Applying KVL,
$-5 I_{y}-10 I_{y}-5 I_{y}-20=0$
$-20 I_{y}=20$
$I_{y}=-1 \mathrm{~A}$
$I_{y}=1$ A through both 5Ω resistances due to 20 V .
$I=I^{\prime}+I^{\prime \prime}+I^{\prime \prime \prime}=0.6-2.5-1=-2.9 \mathrm{~A}$
$I=I^{\prime}+I^{\prime \prime}+I^{\prime \prime \prime}=0.6+7.5-1=7.1 \mathrm{~A}$

Problem3: Find 'V' using superposition theorem in the network shown.
Step1: Consider 4V only and open 2A source.

Applying KVL,

$$
\begin{align*}
& -\mathbf{3} I_{\mathbf{1}}-2 \mathbf{I}_{\mathbf{1}} \mathbf{- 5} \mathbf{I}_{\mathbf{1}}+\mathbf{5} \mathbf{I}_{\mathbf{2}}+\mathbf{4}=\mathbf{0} \\
& -10 I_{1}+5 I_{2}=-4---------- \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& -I_{2}-2 V^{\prime}-5 I_{2}+5 I_{1}=0 \\
& -I_{2}-2\left(-3 I_{1}\right)-5 I_{2}+5 I_{1}=0
\end{aligned}
$$

$$
\begin{equation*}
11 I_{1}-6 I_{2}=0 \tag{2}
\end{equation*}
$$

$$
\begin{array}{ll}
I_{1}=4.8 \mathrm{~A}, & I_{2}=8.8 \mathrm{~A} \\
\mathrm{~V}^{\prime}=-3 I_{1} & \\
\mathrm{~V}^{\prime}=-14.4 \mathrm{~V} &
\end{array}
$$

tep2: Consider 2A only and short 4V source.

Applying KVL

$$
-3 I_{1}-2 I_{2}-5 I_{2}+5 I_{3}=0
$$

$$
\begin{equation*}
-3 I_{1}-7 I_{2}+5 I_{3}=0 \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& -I_{3}-2 V^{\prime \prime}-5 I_{3}+5 I_{2}=0 \\
& -I_{3}-2\left(-3 I_{1}\right)-5 I_{3}+5 I_{2}=0 \\
& 6 I_{1}+5 I_{2}-6 I_{3}=0---- \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& I_{1}=-6.8 \mathrm{~A}, \quad I_{2}=-4.8 \mathrm{~A}, \quad I_{3}=-10.8 \mathrm{~A} \\
& V^{\prime}=-3 I_{1} \\
& V^{\prime}=20.4 \mathrm{~V} \\
& V=V^{\prime}+V^{\prime \prime}=-14.4+20.4=6 \mathrm{~V}
\end{aligned}
$$

Problem4: Find ' I_{x} ' using superposition theorem.
Step1: Consider 12 V only and short 12 V and 8 V source.

$$
I_{T}=\frac{12}{2+2}=3 A
$$

Applying Current Division Rule

$$
I_{x}^{\prime}=I_{T} \times \frac{4}{4+4}=3 / 2=1.5 \mathrm{~A}
$$

Step2: Consider 12 V only and short 12 V and 8 V source.

$$
\begin{aligned}
& I_{T}=\frac{12}{4+1.33}=2.25 \mathrm{~A} \\
& I_{x}^{\prime \prime}=-I_{T}=-2.25 \mathrm{~A}
\end{aligned}
$$

Step3: Consider 8V only and short 12 V and 12 V source.

$=1.5 \mathrm{~A}$
Applying Current Division Rule
$I^{\prime \prime \prime}{ }_{x}=I_{T} \times \frac{2}{2+4}=\frac{1.5 \times 2}{2+4}=0.5 \mathrm{~A}$
$I_{x}=I^{\prime}{ }_{x}+I^{\prime \prime}{ }_{x}+I^{\prime \prime \prime}{ }_{x}=1.5-2.25+0.5=-0.25 \mathrm{~A}$

Problem5: Using superposition theorem, obtain the response 'I' for the network shown.
Step1: Consider $8 \angle 135$ only and open $2 \angle 0$ and $2 \angle 90$ source.

Applying KVL in the direction of I'
$-(2 j) I^{\prime}-(-j) l^{\prime}-8 \angle 135=0$
-j l' $=8 \angle 135$
$I^{\prime}=8 \angle-135 A$

Step2: Consider $2 \angle 0$ only and open $2 \angle 90$ and short $8 \angle 135$ source.

Using Current divider rule,
$I^{\prime \prime}=2 \angle 0 \times \frac{(-j 1)}{-j 1+j 2}$
$I^{\prime \prime}=-2 \mathrm{~A}$

Step3: Consider $2 \angle 90$ only and open $2 \angle 0$ and short $8 \angle 135$ source.

Using Current divider rule,
$I^{\prime \prime \prime}=2 \angle 90 \times \frac{(-j 1)}{-j 1+j 2}$
$l^{\prime \prime \prime}=2 \angle-90 \mathrm{~A}$
$l=l^{\prime}+l^{\prime \prime}+l^{\prime \prime \prime}=8 \angle-135-2+2 \angle-90=10.82 \angle-135 A$

Problem6: Find ' I_{x} ' using superposition theorem.
Step1: Consider 5V only and open 1A and short 10V source.

$$
\begin{aligned}
& \text { Using Ohm's law, } \\
& I_{x}^{\prime}=\frac{5}{1+1.2} \\
& I_{x}^{\prime}=2.2727 \mathrm{~A}
\end{aligned}
$$

Step2: Consider 1A only and Short 5 V and short 10 V source.

$$
\begin{equation*}
I_{2}-I_{1}=1 \tag{1}
\end{equation*}
$$

Applying KVL
$-I_{1}-2 I_{2}+2 I_{3}=0$
$-3 I_{3}-2 I_{3}+2 I_{2}=0$
$2 I_{2}-5 I_{3}=0$--------------------(3)
$I_{1}=-0.5454 \mathrm{~A}, \quad I_{2}=0.4545 \mathrm{~A}, \quad I_{3}=0.1818 \mathrm{~A}$
$I^{\prime \prime}{ }_{x}=I_{1}=-0.5454 \mathrm{~A}$

Applying KVL

$-0.66 I_{1}-3 I_{1}-10=0$
$-3.66 I_{1}=10$
$I_{1}=\frac{10}{-3.66}=-2.7322 \mathrm{~A}$
$I=-I_{1}=2.7322 \mathrm{~A}$
Using Current division rule,
$I^{\prime \prime \prime}=I X \frac{2}{1+2}=1.8214 \mathrm{~A}$
$I^{\prime \prime \prime}{ }_{x}=-I^{\prime \prime \prime}=-1.8214 \mathrm{~A}$
$I_{x}=I^{\prime}{ }_{x}+I^{\prime \prime}{ }_{x}+I^{\prime \prime \prime}{ }_{x}=2.2727-0.5454-1.8215=-0.09 \mathrm{~A}$

Millman's Theorem

If n voltage sources $V_{1}, V_{2}, \ldots . . . V_{n}$ having internal impedances (or series impedances) $Z_{1}, Z_{2}, \ldots . . . Z_{n}$ respectively, are in parallel, then these sources may be replaced by a single voltage source of Voltage V_{M} having a series impedance Z_{M} where V_{M} and Z_{M} are given by

$$
V_{M}=\frac{V_{1} Y_{1}+V_{2} Y_{2}+\ldots \ldots \ldots .+V_{n} Y_{n}}{Y_{1}+Y_{2}+\ldots \ldots . .+Y_{n}}=\frac{\sum_{k=1}^{n} V_{k} Y_{k}}{\sum_{k=1}^{n} Y_{k}}
$$

And

$$
Z_{M}=\frac{1}{Y_{1}+Y_{2}+\ldots \ldots . .+Y_{n}}=\frac{1}{\sum_{k=1}^{n} Y_{k}}
$$

Proof of Millman's Theorem

Consider n voltage sources in parallel as shown in the figure.
Let us convert each voltage source into an equivalent current source for source 1.

$$
I_{1}=\frac{V_{1}}{Z_{1}}=V_{1} Y_{1} \text { as } Y_{1}=\frac{1}{Z_{1}}
$$

Similarly for the remaining sources, we can write

$$
I_{2}=V_{2} Y_{2}, I_{3}=V_{3} Y_{3}, \ldots \ldots . I_{n}=V_{n} Y_{n}
$$

Where $Y_{1}, \ldots \ldots Y_{n}$ are the admittances to be connected in parallel. Hence circuit reduces to

Hence the effective current source across the terminal $A B$ is,

$$
\begin{align*}
& I_{M}=I_{1}+I_{2}+\ldots+I_{n}- \tag{1}\\
& Y_{M}=Y_{1}+Y_{2}+\ldots+Y_{n} \tag{2}
\end{align*}
$$

This is because admittance in parallel get added to each other. Hence the circuit reduces to,

Converting this equivalent current source into the voltage source we get,
$V_{M}=\frac{I_{M}}{Y_{M}}$ and as $Z_{M}=\frac{1}{Y_{M}}$

Substituting I_{M} and Y_{M} from (1) and (2),

$$
V_{M}=\left(I_{1}+L_{2}+\ldots+I_{n}\right) \frac{1}{\left(Y_{1}+Y_{2}+\ldots+Y_{n}\right)}
$$

$$
\text { But } I_{1}=\frac{V_{1}}{Z_{1}}=V_{1} Y_{1}, I_{2}=V_{2} Y_{2}, \ldots . I_{n}=V_{n} Y_{n}
$$

$$
V_{M}=\frac{V_{1} Y_{1}+V_{2} Y_{2}+\ldots \ldots \ldots .+V_{n} Y_{n}}{Y_{1}+Y_{2}+\ldots \ldots . .+Y_{n}}, Z_{M}=\frac{1}{Y_{1}+Y_{2}+\ldots \ldots .+Y_{n}}
$$

Problem1: Using Millman's Theorem, find I_{L} through R_{L} for the network shown in figure .

For the given network, we can write,
$V_{1}=20 \mathrm{~V}$,
$Z_{1}=2 \Omega$,
$V_{2}=40 \mathrm{~V}$,
$Z_{2}=4 \Omega$,
$V_{3}=50 \mathrm{~V}$,
$Z_{3}=5 \Omega$,
Hence $Y_{1}=\frac{1}{Z_{1}}=\frac{1}{2} v$
Hence $Y_{2}=\frac{1}{Z_{2}}=\frac{1}{4} v$
Hence $Y_{3}=\frac{1}{Z_{3}}=\frac{1}{5} \mho$

$$
\begin{aligned}
& \text { According to Millman's Theorem, } \\
& \begin{aligned}
Z_{M} & =\frac{1}{Y_{1}+Y_{2}+Y_{3}}=\frac{1}{\frac{1}{2}+\frac{1}{4}+\frac{1}{5}}=1.0526 \Omega \\
V_{M} & =\frac{V_{1} Y_{1}+V_{2} Y_{2}+V_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}=\frac{20(0.5)+40(0.25) 50(0.2)}{0.95} \\
& =31.5789 \mathrm{~V} \\
I_{L} & =\frac{V_{M}}{Z_{M}+R_{\mathbf{L}}}=3.0211 \mathrm{~A}
\end{aligned}
\end{aligned}
$$

Problem2: Using Millman's Theorem, find current through R_{L} for the network shown in figure .

$$
\begin{aligned}
& \mathrm{Z}_{1}=4 \Omega=\mathrm{Z}_{2}=\mathrm{Z}_{3} \\
& \mathrm{Y}_{1}=\mathrm{Y}_{2}=\mathrm{Y}_{3}=\frac{1}{4} \mathrm{mho}=0.25 \mathrm{mho}
\end{aligned} \quad \mathrm{Z}_{\mathrm{M}}=\frac{1}{\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}}=\frac{1}{\frac{3}{4}}=1.333 \Omega
$$

$$
I_{L}=\frac{V_{M}}{R_{L}+Z_{M}}=\frac{5.333}{10+1.333}=0.47 \mathrm{~A}
$$

Now let $V_{1}=10 \mathrm{~V}, V_{2}=2 \mathrm{~V}, V_{3}=4 \mathrm{~V}$
$V_{M}=\frac{V_{1} Y_{1}+V_{2} Y_{2}+V_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}=\frac{10 \times \frac{1}{4}+2 \times \frac{1}{4}+4 \times \frac{1}{4}}{\frac{3}{4}}=5.333 \mathrm{~V}$

Problem3: Using Millman's Theorem, determine the voltage V_{S} of the network shown in figure . Given $E_{R}=230 \angle 0, E_{\gamma}=230 \angle-120, E_{B}=230 \angle+120$

$$
V_{M}=\frac{V_{1} Y_{1}+V_{2} Y_{2}+V_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
\mathrm{V}_{1}=\mathrm{E}_{\mathrm{R}}=230 \angle 0^{\circ} \mathrm{V}, \mathrm{~V}_{2}=\mathrm{E}_{\mathrm{Y}}=230 \angle-120^{\circ} \mathrm{V}, \mathrm{~V}_{3}=\mathrm{E}_{\mathrm{B}}=230 \angle+120^{\circ} \mathrm{V}
$$

$$
Z_{1}=+j 20 \Omega \text {, i.e. } Y_{1}=\frac{1}{Z_{1}}=\frac{1}{j 20}=-j 0.05 \mathrm{mho}
$$

$$
Z_{2}=-j 20 \Omega \text {, i.e. } Y_{2}=\frac{1}{Z_{2}}=\frac{1}{(-j 20)}=+j 0.05 \mathrm{mho}
$$

$$
Z_{3}=20 \Omega, \quad \text { i.e. } Y_{3}=\frac{1}{Z_{3}}=\frac{1}{20}=0.05 \mathrm{mho}
$$

$$
V_{M}=\frac{230 \angle 0^{\circ} \times(-\mathrm{j} 0.05)+\left(230 \angle-120^{\circ}\right)(+\mathrm{j} 0.05)+\left(230 \angle+120^{\circ}\right)(0.05)}{-\mathrm{j} 0.05+\mathrm{j} 0.05+0.05}
$$

$$
\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{M}}=168.372 \angle-60^{\circ} \mathrm{V}
$$

Problem4: Using Millman's Theorem, determine the current through R_{L} of the network shown in figure.

$\mathrm{Z}_{\mathrm{M}}=\frac{1}{\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}}=\frac{1}{1+\frac{1}{2}+\frac{1}{3}}=0.5454 \Omega$
As the sign of V_{2} is opposite to V_{1} and V_{3},

$$
\mathrm{V}_{\mathrm{M}}=\frac{\mathrm{V}_{1} \mathrm{Y}_{1}-\mathrm{V}_{2} \mathrm{Y}_{2}+\mathrm{V}_{3} \mathrm{Y}_{6}}{\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}}=5.454 \mathrm{~V}
$$

$$
I_{L}=\frac{V_{M}}{Z_{M}+R_{L}}=0.5172 \mathrm{~A}
$$

Problem5: Using Millman's Theorem, find the current through (2+3j) of the network shown in figure.

For the given network, we can write,
$V=2 \mathrm{~V}, Z=2 \Omega$,
$1 \quad 1$
$V_{2}=4 \mathrm{~V}, \quad \mathrm{Z}_{2}=3 \Omega$,
$V_{3}=40 \mathrm{~V}, Z_{3}=4 \Omega$,
Hence $Y{ }_{1}=\frac{1}{Z_{1}}=\frac{1}{2} v$
Hence $Y_{2}=\frac{1}{Z_{2}}=\frac{1}{3} v$

Hence $\boldsymbol{Y}=\frac{Z_{2}}{Z_{3}}=\underset{4}{\frac{3}{4}} \boldsymbol{v}$

$$
\begin{aligned}
Z_{M} & =\frac{1}{Y_{1}+Y_{2}+Y_{3}}=\frac{1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}=0.923 \Omega \\
V_{M} & =\frac{V_{1} Y_{1}+V_{2} Y_{2}+V_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}=\frac{2(0.5)+4(0.33)+40(0.25)}{1.08} \\
& =11.38 \mathrm{~V}
\end{aligned}
$$

$$
I_{L}=\frac{V_{M}}{Z_{M}+R_{L}}=2.7 \angle-45.74 \mathrm{~A}
$$

Thevenin's Theorem

"Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load".

Steps to apply Thevenin's Theorem

\checkmark Remove the branch impedance, through which current is required to be calculated.
\checkmark Calculate the voltage across these open circuited terminals, by using any of the network simplification techniques. This voltage is Thevenin's equivalent voltage $V_{T H}$.
\checkmark Calculate the equivalent impedance $Z_{e q}$, as viewed through the two terminals of the branch from which current is to be calculated by removing that branch impedance and replacing all the independent sources by their internal imprdances.
\checkmark Draw the Thevenin's equivalent showing the voltage source $V_{T H}$, with the impedance $Z_{e q}$ in series with it, across the terminals of the branch through which the current is to be calculated. Reconnect the branch impedance now. Let it be Z_{L}. The required current through the branch is given by,

$$
I=\frac{V_{T H}}{Z_{L}+Z_{e q}}
$$

Problem1: Obtain the Thevenin's equivalent of network shown in fig between terminals x and y.Also find V_{0}

Find V :
From the current source branch,
Remove $3 k \Omega$ resistance connected between x and y.

$$
I_{1}=4 \mathrm{~mA}
$$

$I_{2}=4 \mathrm{~mA}$
Applying KVL,
-6k $I_{1}+6 k I_{2}-3 k I_{1}+12=0$
Using $I_{2}=4 \mathrm{~mA}$

The voltage drop across $3 \mathrm{k} \Omega$
is $=3 \mathrm{kX4m}=\mathbf{1 2 V}$
The voltage drop across $4 \mathrm{k} \Omega$
is $=4 \mathrm{kX4m}=16 \mathrm{~V}$

Trace the path $x-y$
$V_{T H}=V_{0}=28 \mathrm{~V}$

To find $\boldsymbol{R}_{e q}$ short the voltage source and open current source

The Thevenin's equivalent circuit is shown in fig.

$$
\begin{aligned}
I_{L} & =\frac{V_{T H}}{Z_{L}+Z_{e q}} \\
& =3.111 \mathrm{~mA} \\
V_{0} & =3.111 \mathrm{~m} \times 3 \mathrm{k} \\
& =9.333 \mathrm{~V}
\end{aligned}
$$

Method of calculating $Z_{e q}$ for network with dependent sources

$Z_{e q}$ can be calculated as

$$
\begin{aligned}
& Z_{e q}=\frac{V_{O C}}{I_{S C}} \\
& V_{O C}=V_{T H}
\end{aligned}
$$

While calculating $I_{S C}$, all the independent as well as dependent sources must be kept as it is. None of the sources are replaced by open or short circuit.

Proof of Thevenin's Theorem

Consider the network shown.
Let us find the current through Z_{3} by mesh analysis first. Assume the currents as shown.

Applying KVL to the loop,

$$
\begin{align*}
& -Z_{1} I_{1}-Z_{2} I_{1}+Z_{2} I_{2}-E_{2}+E_{1}=0 \\
& \left(-Z_{1}-Z_{2}\right) I_{1}+Z_{2} I_{2}=E_{2}-E_{1}--- \tag{1}\\
& -Z_{3} I_{2}-Z_{2} I_{2}+Z_{2} I_{1}+E_{2}=0 \\
& Z_{2} I_{1}+\left(-Z_{3}-Z_{2}\right) I_{2}=-E_{2}------ \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{I}_{\mathbf{2}} & =\frac{\boldsymbol{D}_{2}}{\boldsymbol{D}} \\
& =\frac{Z_{1} E_{2}+Z_{2} E_{1}}{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}
\end{aligned}
$$

$$
\mathrm{D}=\left|\begin{array}{cc}
-Z_{1}-Z_{2} & Z_{2} \\
Z_{2} & -Z_{3}-Z_{2}
\end{array}\right|=Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}
$$

Now current through Z_{3} is I_{2}, hence calculating D_{2},

$$
D_{2}=\left|\begin{array}{cc}
-Z_{1}-Z_{2} & E_{2}-E_{1} \\
Z_{2} & -E_{2}
\end{array}\right|=Z_{1} E_{2}+Z_{2} E_{1}
$$

Required current

Let us use Thevenin's Theorem.

Step1: Remove the impedance Z_{3}, through which current is to be calculated.

Step2: Obtain the open circuit voltage $V_{A B}=V_{T H}$

$$
-I Z_{1}-I Z_{2}-E_{2}+E_{1}=0
$$

$$
I=\frac{E_{1}-E_{2}}{Z_{1}+Z_{2}}
$$

$$
V_{A B}=I Z_{2}+E_{2}
$$

$$
=\frac{\left(E_{1}-E_{2}\right) Z_{2}^{2}}{Z_{1}+Z_{2}}+E_{2}=V_{T H} \text { with A positive }
$$

Step3: Obtain $Z_{\text {eq }}$ as viewed through terminals A-B, with both the sources replaced by short circuit.

$$
Z_{e q}=\left(Z_{1} \| Z_{2}\right)=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Step4: Thevenin's equivalent across the terminals $A B$ is as shown. Hence the required current I is,

$$
\begin{aligned}
I & =\frac{V_{T H}}{Z_{3}+Z_{e q}} \\
& =\frac{\frac{\left(E_{1}-E_{2}\right) Z_{2}}{Z_{1}+Z_{2}}+E_{2}}{Z_{3}+\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}} \\
I & =\frac{Z_{1} E_{2}+Z_{2} E_{1}}{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}
\end{aligned}
$$

Problem2: Obtain the Thevenin's equivalent of network shown in fig between terminals \mathbf{p} and q .

$$
\begin{aligned}
& V_{x}=\left(2 \times 10^{3}\right) \frac{V x}{4000}-4 \\
& V_{x}=\frac{V x}{2}=4 \\
& V_{x}=8 \mathrm{~V}=V_{T H}
\end{aligned}
$$

Applying KVL to the loop,

$-\left(2 \times 10^{3}\right) I_{S C}-\left(3 \times 10^{3}\right) I_{S C}+4=0$
$-\left(5 \times 10^{3}\right) I_{S C}=-4$
$I_{S C}=0.8 \mathrm{~mA}$

$$
Z_{e q}=\frac{8}{0.8 X 10^{-3}}
$$

$Z_{e q}=10 k \Omega$

Problem3: Find the current in the 10Ω resistor in the network shown by using Thevenin's Theorem.

Convert 12Ω Delta to star,

$$
\frac{12 X 12}{12+12+12}=4 \Omega
$$

Convert 30Ω Delta to star,

$$
\frac{30 \times 30}{30+30+30}=10 \Omega
$$

$$
V_{T H}=V_{A B}=48 \mathrm{I}=139.35 \mathrm{~V}
$$

$$
\begin{aligned}
\| & =\frac{V_{T H}}{R_{L}+R_{e q}} \\
& =\frac{139.3548}{10+24.8387} \\
& =4 \mathrm{~A}
\end{aligned}
$$

Problem4: Find the current through load resistance using Thevenin's Theorem.

Applying KVL to outer closed path excluding current source, we get

$$
\begin{aligned}
& -2 I-2(10+I)+10=0 \\
& -2 I-20-2 I+10=0 \\
& -4 I=10 \\
& I=-2.5 \mathrm{~A} \\
& V_{T H}=2(10+I) \\
& V_{T H}=2(10-2.5)=15 \mathrm{~V}
\end{aligned}
$$

To find equivalent resistance,

$R_{e q}=(2| | 2)+1$

$$
\begin{aligned}
& R_{e q}=1+1=2 \Omega \\
& I_{L}=\frac{15}{2+13} \\
& I_{L}=1 \mathrm{~A}
\end{aligned}
$$

Problem5: Calculate Thevenin's equivalent circuit across AB for the network shown in fig.

Due to dependent source, $R_{e q}=\frac{V_{T H}}{I_{S C}}$
$I_{1}-I_{2}=5$

Applying KVL to super mesh

$-30 I_{1}-15 I_{2}+15 I_{3}=0$

Applying KVL to loop,

$-150-10 I_{3}-1 / 3 V_{x}-15 I_{3}+15 I_{2}=0$
$-150-10 I_{3}-1 / 3 \times 15\left(I_{2}-I_{3}\right)-15 I_{3}+15 I_{2}=0$
$-150-10 I_{3}-5 I_{2}+5 I_{3}-15 I_{3}+15 I_{2}=0$
$10 I_{2}-20 I_{3}=150$

$$
\begin{aligned}
I_{S C} & =-I_{1}=2 \mathrm{~A} \\
\boldsymbol{R}_{e q} & =\frac{V_{T H}}{I_{S C}} \\
& =75 / 2 \\
& =37.5 \Omega
\end{aligned}
$$

Problem6: Find Thevenin's voltage, short circuit current and determine the actual current flowing through the 6Ω resistor.

As $A B$ is open, the loop current is 3 A .

$$
V_{x}=1 \times 3=3 V
$$

$$
V_{T H}=6+3+18=27 \mathrm{~V}
$$

Due to dependent source, $R_{e q}=\frac{V_{T H}}{I_{S C}}$
$I_{2}-I_{1}=3$

Applying KVL to super mesh

$18-I_{1}+2 V_{x}=0$
$18-I_{1}+2 X-I_{1}=0$
$3 I_{1}=18$

$$
\begin{aligned}
R_{e q} & =\frac{V_{T H}}{I_{S C}} \\
& =75 / 2 \\
& =37.5 \Omega
\end{aligned}
$$

$I_{1}=6 \mathrm{~A}$
$I_{2}=3+I_{1}$
$I_{2}=3+6=9 \mathrm{~A}$

$$
\|=\frac{V_{T H}}{R_{L}+R_{e q}}=\frac{27}{3+6}
$$

$I_{S C}=I_{2}=9 \mathrm{~A}$

$$
=3 \mathrm{~A}
$$

Norton's Theorem

"Any linear circuit containing several voltages and current sources can be replaced by just one single current source in parallel with a single resistance".

Steps to apply Norton's Theorem

\checkmark Short the branch, through which current is to be calculated.
\checkmark Calculate the current through this short circuited branch, by using any of the network simplification techniques. This current is nothing but Norton's current I_{N}.
\checkmark Calculate the equivalent impedance $Z_{e q}$, as viewed through the two terminals of the branch from which current is to be calculated by removing that branch impedance and replacing all the independent sources by their internal impedances.
\checkmark Draw the Norton's equivalent showing the voltage source I_{L}, with the impedance $Z_{e q}$ in Parallel with it, across the terminals of interest. Reconnect the branch impedance now. Let it be Z_{L}. The required current through the branch is given by,

$$
\mathrm{I}=I_{N} \frac{Z_{e q}}{Z_{L}+Z_{e q}}
$$

Proof of Norton's Theorem

Consider the network shown.
Let us find the current through Z_{3} by mesh analysis first. Assume the currents as shown.

Applying KVL to the loop,

$$
\begin{align*}
& -Z_{1} I_{1}-Z_{2} I_{1}+Z_{2} I_{2}-E_{2}+E_{1}=0 \\
& \left(-Z_{1}-Z_{2}\right) I_{1}+Z_{2} I_{2}=E_{2}-E_{1}--- \tag{1}\\
& -Z_{3} I_{2}-Z_{2} I_{2}+Z_{2} I_{1}+E_{2}=0 \\
& Z_{2} I_{1}+\left(-Z_{3}-Z_{2}\right) I_{2}=-E_{2}------ \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\boldsymbol{I}_{\mathbf{2}} & =\frac{\boldsymbol{D}_{\mathbf{2}}}{\boldsymbol{D}} \\
& =\frac{Z_{1} E_{2}+Z_{2} E_{1}}{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}
\end{aligned}
$$

$$
\mathrm{D}=\left|\begin{array}{cc}
-Z_{1}-Z_{2} & Z_{2} \\
Z_{2} & -Z_{3}-Z_{2}
\end{array}\right|=Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}
$$

Now current through Z_{3} is I_{2}, hence calculating D_{2},

$$
D_{2}=\left|\begin{array}{cc}
-Z_{1}-Z_{2} & E_{2}-E_{1} \\
Z_{2} & -E_{2}
\end{array}\right|=Z_{1} E_{2}+Z_{2} E_{1}
$$

Required current

Let us use Norton's Theorem.

Step1: Short the branch A-B.

Step2: Calculate I_{N}

$$
\mathrm{D}=\left|\begin{array}{cc}
Z_{1}+Z_{2} & -Z_{2} \\
Z_{2} & -Z_{2}
\end{array}\right|=-Z_{1} Z_{2}
$$

with

Applying KVL to two loops

$$
E_{2}-I_{2} Z_{2}-I_{1} Z_{2}=0
$$

$E_{2}-I_{2} Z_{2}-I_{1} Z_{2}=0$

$$
-I_{1} Z_{1}-I_{1} Z_{2}+I_{2} Z_{2}-E_{2}+E_{1}=0
$$

$$
\begin{equation*}
I_{1}\left(Z_{1}+Z_{2}\right)-I_{2} Z_{2}=E_{1}-E_{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
I_{1} Z_{2}-\boldsymbol{L}_{2} Z_{2}=\Xi_{2} \tag{2}
\end{equation*}
$$

$\boldsymbol{I}_{1} Z_{2}-\boldsymbol{L}_{2} Z_{2}=\boldsymbol{E}_{2}$

$$
D_{2}=\left|\begin{array}{cc}
Z_{1}+Z_{2} & E_{1}-E_{2} \\
Z_{2} & -E_{2}
\end{array}\right|=E_{2}\left(Z_{1}+Z_{2}\right)-Z_{2}\left(E_{1}-E_{2}\right)
$$

$$
I_{2}=\frac{D_{2}}{D}
$$

$$
I_{N}=\frac{Z_{1} E_{2}+Z_{2} E_{1}}{Z_{1} Z_{2}}
$$

Step3: Obtain $Z_{\text {eq }}$ as viewed through terminals A-B, with both the sources replaced by short circuit.

$$
Z_{e q}=\left(Z_{1} \| Z_{2}\right)=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Step4: Norton's equivalent across the terminals AB is as shown. Hence the required current I is,

$$
\begin{aligned}
& I=I_{N} \frac{Z_{e q}}{Z_{3}+Z_{e q}} \\
& Z_{1} \frac{\frac{Z_{1} E_{2}+Z_{2} E_{1}}{Z_{2}} X \frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}}{Z_{3}+\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}}
\end{aligned}
$$

$$
I=\frac{Z_{1} E_{2}+Z_{2} E_{1}}{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}
$$

Problem1: Using Norton's Theorem, find the current 'I' of the network shown.

Short the load branch
$I_{3}=-2 \mathrm{~A}$
Applying KVL to the loop,
$-I_{1}+5=0$
$I_{1}=5 \mathrm{~A}$
$-3 I_{2}+3 I_{3}-2 I_{2}=0$
$-5 I_{2}+3 I_{3}=0 \rightarrow 5 I_{2}=3(-2)$
$I_{2}=-6 / 5=-1.2 \mathrm{~A}$
$I_{N}=I_{1}-=5+1.2=6.2 \mathrm{~A}$

To find equivalent resistance,

$$
\begin{aligned}
& R_{e q}=(5 \| 1) \\
& R_{e q}=0.833 \Omega \\
& I_{L}=I_{N} \frac{R_{e q}}{R_{L}+R_{e q}} \\
& I_{L}=0.885 \mathrm{~A}
\end{aligned}
$$

Problem2: Determine the Norton's equivalent circuit across AB terminals in the the network. Hence determine current in 5Ω resistor. And draw Thevenin's equivalent circuit across $A B$.

$\mathrm{Voc}=6 I_{x}=30 \mathrm{~V}$

$$
\begin{aligned}
& R_{e q}=\frac{V_{o c}}{I_{S C}} \\
& R_{e q}=30 / 5=6 \Omega
\end{aligned}
$$

$I_{L}=I_{N} \frac{R_{e q}}{R_{L}+R_{e q}}$
$I_{L}=5 \times \frac{6}{5+6}$
$I_{L}=2.7272 \mathrm{~A}$

Problem3: Determine the current through 1Ω resistor connected across $A B$ in the network using Norton's Theorem.

$$
\begin{aligned}
& I_{L}=I_{N} \frac{R_{e q}}{R_{L}+R_{e q}} \\
& I_{L}=0.5 \times \frac{2.2}{1+2.2} \\
& I_{L}=0.34375 \mathrm{~A}
\end{aligned}
$$

Problem4: Obtain Thevenin's and Norton's equivalent circuits across the terminals a-b of the circuit shown.

$$
\begin{aligned}
& I_{N}=5 \angle 30 \frac{(5+5 j)}{10+(5+5 j)} \\
& I_{N}=2.2361 \angle 56.57 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
R_{e q} & =(5+5 j) \|(15+5 j) \\
& =\frac{(5+5 \boldsymbol{j})(\mathbf{1 5}+5 \boldsymbol{j})}{(5+5 \boldsymbol{j})+(\mathbf{1 5}+5 \boldsymbol{j})} \\
\boldsymbol{R}_{e q} & =5 \angle 36.86 \Omega
\end{aligned}
$$

$$
V_{T H}=I_{N} Z_{e q}=11.1805 \angle 93.43 \mathrm{~V}
$$

Problem5: Obtain Thevenin's and Norton's equivalent circuits across the terminals A and B for the circuit shown.

Applying KVL

$$
-3 I-8 I+39=0
$$

$-11 \mathrm{I}+39=0$

$$
I=39 / 11=3.5454 \mathrm{~A}
$$

$V_{T H}=3 I=10.6363 \mathrm{~V}$
$R_{e q}=3| | 8=2.1818 \Omega$

Maximum Power Transfer Theorem

"Maximum power is transferred from the source to the load when the load resistance is equal to the thevenin's equivalent resistance."

Let $Z_{e q}$ be the equivalent impedance of the network as viewed from the terminals $A-B$ and replacing all the independent sources by their internal impedances, as shown in the figure.

Let $Z_{\text {eq }}=\mathrm{R}+\mathrm{j} \mathrm{X}$
Then the maximum power will be transferred to the load, if Z_{L} is complex conjugate of $Z_{e q}$.
$Z_{L}=Z_{e q}{ }^{*}=\mathrm{R}-\mathrm{jX}$

Proof of Maximum Power Transfer Theorem

Let the given network is replaced by its Thevenin's equivalent across the load terminals as shown.

Let $Z_{e q}=\mathrm{R}+\mathrm{jX} \Omega$

And $Z_{L}=R_{L}+\mathrm{j} X_{L} \Omega$
$I=\frac{V_{T H}}{Z_{e q}+Z_{L}}=\frac{V_{T H}}{\mathrm{R}+\mathrm{jX}+R_{L}+j x_{L}}$
$\mathbf{I}=\frac{V_{T H}}{\left(\mathrm{R}+R_{L}\right)+\mathrm{j}\left(X_{L}+X\right)}$
The power delivered to the load is $P_{L}=I^{2} R_{L}$

Now the magnitude of the current is, $I=\frac{V T H}{\sqrt{\left(R+R_{L}\right)^{2}+\left(X_{L}+X\right)^{2}}}$ $P_{L}=\frac{V_{T H}^{2}}{\left(\mathrm{R}+R_{L}\right)+\left(X_{L}+X\right)^{2}} \cdot R_{L}$

Now for the load impedance Z_{L} both R_{L} and X_{L} are variable and are to be decided such that power will be maximum. Hence according to maxima theorem, we can write that for maximum power transfer, with respect to variable X_{L} and fixed R_{L}.

$$
\begin{aligned}
& \frac{\partial P_{L}}{\partial X_{L}}=0 \\
& \frac{\partial}{\partial}\left[\frac{V_{T H}^{2} R_{L}}{\left(\mathrm{R}+R_{L}\right)^{2}+\left(x_{L}+X\right)^{2}}\right]=0 \\
& \frac{-2 V_{T H}{ }^{2} R_{L}\left(X_{L}+X\right)}{\left[\left(\mathrm{R}+R_{L}\right)+\left(x_{L}+X\right)^{2}\right]^{2}}=0 \\
& X+X_{L}=0 \rightarrow X_{L}=-X
\end{aligned}
$$

Thus load reactance must be same in magnitude of the reactance of $Z_{e q}$ but opposite in sign.
Similarly power transfer will be maximum with respect to variable R_{L} and fixed X_{L}

$$
\begin{array}{lll}
\frac{\partial P_{L}}{\partial x_{L}}=0 & \text { i.e } \quad \frac{\partial}{\partial} \frac{V_{T H}{ }^{2} R_{L}}{\left[\left(R+R_{L}\right)^{2}+\left(X_{L}+X\right)^{2}\right]}=0
\end{array}
$$

Substituting $X_{L}=-X$, as already derived for maximum power,
$\frac{\partial}{\partial}\left[\frac{V_{T H}{ }^{2} R_{L}}{\left(\mathrm{R}+R_{L}\right)^{2}}=0\right.$
$\frac{\left(\mathrm{R}+R_{L}\right)^{2} V_{T H}{ }^{2}-V_{T H}{ }^{2} R_{L} 2\left(\mathrm{R}+R_{L}\right)}{\left(\mathrm{R}+R_{L}\right)^{4}}=0$
$\left(\mathrm{R}+R_{L}\right)^{2} V_{T H}{ }^{2}-V_{T H}{ }^{2} R_{L} 2\left(\mathrm{R}+R_{L}\right)=0$
$\left(\mathrm{R}+R_{L}\right)^{2}-R_{L} 2\left(\mathrm{R}+R_{L}\right)=0$
$R^{2}+2 R R_{L}+R_{L}{ }^{2}-2 R R_{L}-2 R_{L}^{2}=0$
$R^{2}=R_{L}{ }^{2}$
$\mathrm{R}=\boldsymbol{R}_{\boldsymbol{L}}$

Thus the resistance of load must be same as that of equivalent impedance of the network. Thus when Z_{L} is complex conjugate of $Z_{\text {eq }}$, The power transfer to the load is maximum and is given by,

$$
\begin{aligned}
& P_{\max }=I_{\mathrm{R}=}^{2}=\frac{V_{T H}^{2} R_{L}}{\left(2 R_{L}\right)^{2}} \\
& P_{\max }=\frac{V_{T H}{ }^{2}}{4 R_{L}}
\end{aligned}
$$

Problem1: For the circuit shown, find the value of R that will receive maximum power. Determine this power.

To find $\boldsymbol{P}_{\max }, \mathrm{R}=\boldsymbol{R}_{\boldsymbol{e q}}$ obtained by opening the load branch and shorting voltage source as

$$
\begin{aligned}
R_{e q} & =(10.9| | 19.6)+(5.2| | 7.1) \\
& =7.0046+3.0016 \\
R_{e q} & =10.0062 \Omega \\
R & =R_{e q} \text { for } P_{\max }
\end{aligned}
$$

$$
\begin{aligned}
& -10.9 I_{1}+100-19.6 I_{1}=0 \\
& I_{1}=3.2786 \mathrm{~A} \\
& -5.2 I_{2}+100-7.1 I_{2}=0 \\
& I_{2}=8.13 \mathrm{~A} \\
& V_{T H}=(19.6 \times 3.2786)-(7.1 \times 8.13) \\
& V_{T H}=6.5375 \mathrm{~V}
\end{aligned}
$$

$$
P_{\max }=\frac{V_{T H}^{2}}{4 R}
$$

$$
P_{\max }=\frac{(6.5393)^{2}}{4 X 10.0062}=1.0684 \mathrm{~W}
$$

Problem2: Find the value of Z_{L} for which maximum power transfer occurs in the circuit given.

$$
\begin{aligned}
Z_{e q} & =10\| \|(3-4 j) \\
& =\frac{10 X(3-4 j)}{10+3-4 j}
\end{aligned}
$$

$Z_{\text {eq }}=$ 2.973-2.1622j Ω
$R_{L}=Z_{\text {eq }}{ }^{*}=2.973+2.1622 \mathrm{j} \Omega$ for Pmax

Problem3: For the circuit shown, what would be the value of R such that maximum power transfer can takes place from the rest of the network to ' R '. Obtain the amount of power.

$$
\begin{aligned}
& I_{1}=5 \mathrm{~A} \\
& I_{2}=\frac{24}{10+5} \\
& I_{2}=1.6 \mathrm{~A} \\
& V_{T H}=(2 X 5)-(5 X 1.6) \\
& V_{T H}=10-8=2 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& P_{\max }=\frac{V_{T H}^{2}}{4 R} \\
& P_{\max }=\frac{(2)^{2}}{4 \times 5.33}=0.1875 \mathrm{~W}
\end{aligned}
$$

Problem4: In the circuit shown, Find the value of R_{L} for which maximum power is delivered. Also find the maximum power that is delivered to the load.

$$
\begin{equation*}
I_{1}-I_{2}=20 \tag{1}
\end{equation*}
$$

$$
-20 I_{1}-10 I_{1}-50 I_{2}-120 I_{2}=0
$$

$$
\begin{equation*}
-30 I_{1}-170 I_{2}=0 \tag{2}
\end{equation*}
$$

$I_{1}=17 \mathrm{~A}$

$$
I_{2}=-3 \mathrm{~A}
$$

$$
\begin{aligned}
& V_{T H}=(10 \mathrm{X} 17)+(50 \mathrm{X}-3) \\
& V_{T H}=170-150 \\
& V_{T H}=20 \mathrm{~V}
\end{aligned}
$$

$$
P_{\max }=\frac{V_{T H}^{2}}{4 R}
$$

$$
P_{\max }=\frac{(20)^{2}}{4 X 50}=2 \mathrm{~W}
$$

MODULE-5
 TWO PORT NETWORK PARAMETERS

By

K PRABHAVATHI
Assistant Professor
Department of ECE
BGSIT, BG Nagara

Contents

$>$ Definition of $\mathrm{z}, \mathrm{y}, \mathrm{h}$ and Transmission parameters
> Modelling with these parameters
$>$ Relationship between parameters sets

Introduction

> Port: A pair of terminals at which an electrical signal may enter or leave a network.
Why ports are required?

- To connect input excitation to the network.
- To connect load
- To make measurements.
> Types of network
- One port network
- Two port network
- Multiport network

Two Port Network

> Two Port Network

- Driving port/input port: at which energy source is connected.
- Output port: at which load is connected.

$>$ Four variables: V_{1}, V_{2}, I_{1} and I_{2}
- Any two port network can be described with these four variables
- Network can be considered as black box for analysis without knowing network details.

Two Port Network

> Assumptions

- Measurements can be made on the box consisting network using only port variables.
- The network inside the box is assumed to consist only the linear elements.
- The network may consist of dependent sources but independent sources are not allowed.
- If the network consists of energy storing elements such as inductor and capacitor then the initial condition on them is assumed to be zero.

For Network analysis:

- Four variables are represented in terms of two linear equations.
- Two variables are considered as dependent while other two are considered as independent variables.
$>$ Six possible ways of selecting two independent variables:
- z parameters (Open Circuit Impedance Parameters)
- y parameters (Short Circuit Admittance Parameters)
- h parameters (Hybrid Parameters)
- g parameters (Inverse Hybrid Parameters)
- ABCD parameters (Transmission Parameters)
- A'B'C'D' (Inverse Transmission Parameters)

z Parameters or Open Circuit Impedance Parameters

> They are obtained by expressing voltages at two ports in terms of currents at two ports.
$>\boldsymbol{I}_{1}$ and \boldsymbol{I}_{2} are independent variables
$>\boldsymbol{V}_{1}$ and $\boldsymbol{V}_{\mathbf{2}}$ are dependent variables

$$
\begin{aligned}
& V_{1}=f_{1}\left(I_{1}, I_{2}\right) \\
& V_{2}=f_{2}\left(I_{1}, I_{2}\right)
\end{aligned}
$$

Above equations and be written as

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \ldots \ldots e q(1) \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2} \ldots \ldots e q(2)
\end{aligned}
$$

In matrix form, equations can be written as

$$
\begin{array}{rlrl}
V_{1} & z_{11} Z_{12} & I_{1} \\
V_{2} & = & z_{21} Z_{22} & I_{2} \\
V & = & Z \quad I & \\
V & I
\end{array}
$$

z Parameters or Open Circuit Impedance Parameters

> The individual z Parameters can be obtained as follows

1. To obtain z_{11}

Let $I_{2}=0 \rightarrow$ Port 2 is open circuited
From eq (1) $\quad \boldsymbol{V}_{\mathbf{1}}=\boldsymbol{Z}_{\mathbf{1 1}} \boldsymbol{I}_{\mathbf{1}}$

$$
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \Omega
$$

The parameter Z_{11} is called open circuit driving point input impedance.
2. To obtain Z_{21}

Let $I_{2}=0 \rightarrow$ Port 2 is open circuited
From eq (2) $\quad \boldsymbol{V}_{\mathbf{2}}=\boldsymbol{Z}_{\mathbf{2 1}} \boldsymbol{I}_{\mathbf{1}}$

$$
z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0} \Omega
$$

The parameter Z_{21} is called open circuit forward transfer impedance.

z Parameters or Open Circuit Impedance Parameters

3. To obtain Z_{12}

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2}
\end{aligned}
$$

Let $I_{1}=0 \rightarrow$ Port 1 is open circuited
From eq (1)

$$
\begin{gathered}
V_{1}=Z_{12} I_{2} \\
z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \Omega
\end{gathered}
$$

The parameter Z_{21} is called open circuit reverse transfer impedance.
4. To obtain Z_{22}

Let $I_{1}=0 \rightarrow$ Port 1 is open circuited

> From eq (2)

$$
V_{2}=Z_{22} I_{2}
$$

$$
z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \Omega
$$

The parameter Z_{22} is called open circuit driving point output impedance.

z Parameters or Open Circuit Impedance Parameters

$>$ Equivalent Network in terms of z parameters

Conditions for Symmetry

$$
z_{11}=z_{22}
$$

$>$ Conditions for Reciprocity

$$
z_{12}=z_{21}
$$

Note:
A network is symmetrical if its input impedance is equal to its output impedance.

A network is said to be reciprocal if the voltage appearing at port 2 due to a current applied at port 1is the same as the voltage appearing at port 1 when the same current is applied to port 2.

Problem1: Determine the z-parameters for the circuit shown.

Applying KVL to the loops,

$$
\begin{align*}
& -2 I_{1}-1 I_{1}+1 I_{3}+V_{1}=0 \\
& V_{1}=3 I_{1}-I_{3}-------- \tag{1}
\end{align*}
$$

$-2 I_{2}-2 I_{3}+V_{2}=0$
$V_{2}=2 I_{2}+2 I_{3}$

$$
\begin{align*}
& -2 I_{3}-2 I_{3}-2 I_{2}-1 I_{3}+1 I_{1}=0 \\
& 5 I_{3}=I_{1}-2 I_{2} \\
& I_{3}=(1 / 5) I_{1}+(-2 / 5) I_{2}----- \tag{3}
\end{align*}
$$

Substituting value of I_{3} in eqn (1)

$$
\begin{aligned}
& V_{1}=3 I_{1}-\left[1 / 5 I_{1}-2 / 5 I_{2}\right] \\
& V_{1}=(14 / 5) I_{1}+(2 / 5) I_{2}
\end{aligned}
$$

Substituting value of I_{3} in eqn (2)

$$
\begin{aligned}
& V_{2}=2 I_{2}+2\left[(1 / 5) I_{1}+(-2 / 5) I_{2}\right] \\
& V_{2}=(2 / 5) I_{1}+(6 / 5) I_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
Z_{11}=14 / 5 \Omega & Z_{12}=2 / 5 \Omega \\
Z_{21}=2 / 5 \Omega & Z_{22}=6 / 5 \Omega
\end{array}
$$

Problem2: Determine the z-parameters for the circuit shown.

Applying KVL to the loops,
$-I_{1}+1 I_{3}-5 I_{1}-5 I_{2}+V_{1}=0$
$V_{1}=6 I_{1}+5 I_{2}-I_{3}$
$-2 I_{2}-2 I_{3}-5 I_{2}-5 I_{1}+V_{2}=0$
$V_{2}=5 I_{1}+7 I_{2}+2 I_{3}$
$-3 I_{3}-2 I_{3}-2 I_{2}-1 I_{3}+1 I_{1}=0$
$6 I_{3}=I_{1}-2 I_{2}$
$I_{3}=(1 / 6) I_{1}+(-1 / 3) I_{2}$

Substituting value of I_{3} in eqn (1)

$$
\begin{aligned}
& V_{1}=6 I_{1}+5 I_{2}-\left[(1 / 6) I_{1}+(-1 / 3) I_{2}\right] \\
& V_{1}=(35 / 6) I_{1}+(16 / 3) I_{2}
\end{aligned}
$$

Substituting value of I_{3} in eqn (2)

$$
\begin{aligned}
& V_{2}=5 I_{1}+7 I_{2}+2\left[(1 / 6) I_{1}+(-1 / 3)\right] \\
& V_{2}=(16 / 3) I_{1}+(19 / 3) I_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
Z_{11}=35 / 6 \Omega & Z_{12}=16 / 3 \Omega \\
Z_{21}=16 / 3 \Omega & Z_{22}=19 / 3 \Omega
\end{array}
$$

Problem3: Determine the z-parameters for the circuit shown.

Applying KVL to the loops,

$$
\begin{align*}
& -I_{1}-2 I_{1}+2 I_{3}+V_{1}=0 \\
& V_{1}=3 I_{1}-2 I_{3}------ \tag{1}
\end{align*}
$$

$$
-2 I_{2}-2 I_{3}+V_{2}=0
$$

$$
\begin{equation*}
V_{2}=2 I_{2}+2 I_{3} . \tag{2}
\end{equation*}
$$

$-I_{3}-2 I_{3}-2 I_{2}-2 I_{3}+2 I_{1}=0$
$5 I_{3}=2 I_{1}-2 I_{2}$
$I_{3}=(2 / 5) I_{1}+(-2 / 5) I_{2}---$

Substituting value of I_{3} in eqn (1)

$$
V_{1}=3 I_{1}-2\left[(2 / 5) I_{1}+(-2 / 5) I_{2}\right]
$$

$$
V_{1}=(11 / 5) I_{1}+(4 / 5) I_{2}
$$

Substituting value of I_{3} in eqn (2)

$$
\begin{aligned}
& V_{2}=\mathbf{2} I_{2}+\mathbf{2}\left[(2 / 5) I_{1}+(-2 / 5) I_{2}\right] \\
& V_{2}=(4 / 5) I_{1}+(6 / 5) I_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
Z_{11}=11 / 5 \Omega & Z_{12}=4 / 5 \Omega \\
Z_{21}=4 / 5 \Omega & Z_{22}=6 / 5 \Omega
\end{array}
$$

Problem4: Determine the z-parameters and also draw the z-parameter equivalent circuit.

$$
\begin{aligned}
& Z_{11}=14 / 5 \Omega \\
& Z_{21}=2 / 5 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& Z_{12}=2 / 5 \Omega \\
& Z_{22}=6 / 5 \Omega
\end{aligned}
$$

Problem5: Determine the z-parameters of the circuit shown.

Applying KVL to the loops,
$-I_{1}-3 I_{2}-2 I_{1}-2 I_{2}+V_{1}=0$
$V_{1}=3 I_{1}+5 I_{2}-----------(1)$

$$
\begin{array}{ll}
-2 I_{2}+2 I_{3}-2 I_{2}-2 I_{1}+V_{2}=0 & Z_{11}=3 \Omega \\
V_{2}=2 I_{1}+4 I_{2}-2 I_{3} & Z_{21}=-6 \Omega \\
V_{2}=2 I_{1}+4 I_{2}-2\left[4 I_{1}+4 I_{2}\right] & \\
V_{2}=-6 I_{1}-4 I_{2}----------(2) &
\end{array}
$$

$$
Z_{12}=5 \Omega
$$

$$
Z_{22}=-4 \Omega
$$

Problem6: Determine the z-parameters of the circuit shown.

$$
\begin{align*}
& I_{\mathrm{X}}=\mathrm{I}_{2}+\mathrm{I}_{3} \\
& I_{1}-I_{3}=\frac{G_{k}}{2}=\frac{I_{2}+I_{3}}{2} \\
& 2 I_{1}-2 I_{3}=I_{2}+I_{3} \\
& I_{3}=2 / 3 I_{1}-1 / 3 I_{2} \tag{1}
\end{align*}
$$

Applying KVL to the loops,

$$
-8 I_{3}-5 I_{3}-5 I_{2}+V_{1}=0
$$

$$
\begin{equation*}
V_{1}=13 I_{3}+5 I_{2} \tag{2}
\end{equation*}
$$

$-5 I_{2}-5 I_{3}+V_{2}=0$
$V_{2}=5 I_{2}+5 I_{3}$

Substituting value of I_{3} in eqn (2)
$V_{1}=5 I_{2}+13\left[2 / 3 I_{1}-1 / 3 I_{2}\right]$
$V_{1}=(26 / 3) I_{1}+(2 / 3) I_{2}$
Substituting value of I_{3} in eqn (3)

$$
\begin{aligned}
& V_{2}=5 I_{2}+5\left[2 / 3 I_{1}-1 / 3\right] \\
& V_{2}=(10 / 3) I_{1}+(10 / 3) I_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
Z_{11}=26 / 3 \Omega & Z_{12}=2 / 3 \Omega \\
Z_{21}=10 / 3 \Omega & Z_{22}=10 / 3 \Omega
\end{array}
$$

y Parameters or Short Circuit Admittance Parameters

$>$ They are obtained by expressing currents at two ports in terms of voltage at two ports.
$>\boldsymbol{I}_{1}$ and $\boldsymbol{I}_{\mathbf{2}}$ are dependent variables
$>\boldsymbol{V}_{1}$ and \boldsymbol{V}_{2} are independent variables

$$
\begin{aligned}
& I_{1}=f_{1}\left(V_{1}, V_{2}\right) \\
& I_{2}=f_{2}\left(V_{1}, V_{2}\right)
\end{aligned}
$$

Above equations and be written as

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \ldots \ldots e q(1) \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2} \ldots \ldots e q(2)
\end{aligned}
$$

In matrix form, equations can be written as

$$
\begin{array}{rl}
I_{1} & y_{11} y_{12} \\
I_{2} & V_{1} \\
y_{21} & y_{22} \\
I & V_{2} \\
I & y
\end{array}
$$

y Parameters or Short Circuit Admittance Parameters

> The individual y Parameters can be obtained as follows

1. To obtain y_{11}

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{aligned}
$$

Let $V_{2}=\mathbf{0} \rightarrow$ Port 2 is short circuited
From eq (1)

$$
\begin{gathered}
I_{1}=y_{11} V_{1} \\
y_{11}=\frac{I_{1}}{V_{1}} \|_{V_{2}=0} \mho
\end{gathered}
$$

The parameter y_{11} is called short circuit driving point input admittance.
2. To obtain y_{21}

Let $V_{2}=\mathbf{0} \rightarrow$ Port 2 is short circuited
From eq (2) $\quad \boldsymbol{I}_{\mathbf{2}}=\boldsymbol{y}_{\mathbf{2 1}} \boldsymbol{V}_{\mathbf{1}}$

$$
y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0} \mho
$$

The parameter y_{21} is called short circuit forward transfer admittance.

y Parameters or Short Circuit Admittance Parameters

3. To obtain y_{12}

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{aligned}
$$

Let $V_{1}=0 \rightarrow$ Port 1 is short circuited
From eq (1)

$$
\begin{gathered}
I_{1}=y_{12} V_{2} \\
y_{12}=\frac{I_{1}}{V_{2}} V_{1}=0
\end{gathered}
$$

The parameter y_{12} is called short circuit reverse transfer admittance.
4. To obtain y_{22}

Let $V_{1}=0 \rightarrow$ Port 1 is short circuited
From eq (2) $\quad \boldsymbol{I}_{\mathbf{2}}=\boldsymbol{y}_{\mathbf{2 2}} \boldsymbol{V}_{\mathbf{2}}$

$$
y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0} \mho
$$

The parameter y_{22} is called short circuit driving point output admittance.

y Parameters or Short Circuit Admittance Parameters

$>$ Equivalent Network in terms of y parameters

> Conditions for Symmetry
$>$ Conditions for Reciprocity

$$
y_{11}=y_{22}
$$

$$
y_{12}=y_{21}
$$

Problem 1: Following short circuit currents and voltages are obtained experimentally for a two port network.
i) With output port short circuited: $I_{1}=5 m A, I_{2}=-0.3 m A, V_{1}=25 \mathrm{~V}$
ii) With input port short circuited: $=-5 m A, I_{2}=10 m A, V_{2}=30 \mathrm{~V}$

Determine y parameters.
i) Output port short circuited $\rightarrow V_{2}=\mathbf{0 V}$

By definition

$$
\begin{aligned}
& \boldsymbol{y}_{11}=\frac{I_{1}}{V_{1} V_{2}=\mathbf{0}}=\frac{5 * 10^{-3}}{25}=0.2 \mathrm{mv} \\
& \boldsymbol{y}_{\mathbf{2 1}}=\frac{I_{2}}{\left.\boldsymbol{V}_{\mathbf{1}}\right|_{V_{2}}=\mathbf{0}}=\frac{-0.3 * 10^{-3}}{25}=-0.012 \mathrm{mv}
\end{aligned}
$$

ii) Input port short circuited $\boldsymbol{\rightarrow} \boldsymbol{V}_{\mathbf{1}}=\mathbf{0 V}$

By definition

$$
\begin{aligned}
& \boldsymbol{y}_{\mathbf{1 2}}=\frac{I_{1}}{\boldsymbol{V}_{2}} \boldsymbol{V}_{\mathbf{1}}=\mathbf{0}=\frac{-5 * 10^{-3}}{30}=-0.16667 \mathrm{mv} \\
& \boldsymbol{y}_{\mathbf{2 2}}={\left.\frac{I_{2}}{\boldsymbol{V}_{2}}\right|_{\boldsymbol{V}_{1}}=\mathbf{0}}=\frac{10 * 10^{-3}}{30}=0.3333 \mathrm{mv}
\end{aligned}
$$

Problem2: Determine the y-parameters for the two port circuit shown in figure.

Apply KCL at node A
y -parameters are given by
$I_{1}=y_{11} V_{1}+y_{12} V_{2}$ $I_{2}=y_{21} V_{1}+y_{22} V_{2}$

From fig

$$
\begin{aligned}
& V_{A}=V_{1} \\
& V_{B}=V_{2}
\end{aligned}
$$

$I_{1}-I_{3}-I_{4}=0$
$I_{1}=I_{3}+I_{4}=\frac{V_{1}}{2}+\frac{V_{1}-V_{2}}{2}$
$I_{1}=V_{1}-0.5 V_{2} \ldots(1)$

Assume two nodes A and B and also assume branch currents

Substitute eq(1) in eq(2)

$$
\begin{aligned}
& I_{2}=3\left(V_{1}-0.5 V_{2}\right)+0.5 V_{2}-0.5 V_{1}+0.5 V_{2} \\
& I_{2}=2.5 V_{1}-0.5 V_{2} \ldots(3)
\end{aligned}
$$

Apply KCL at node B

$$
\begin{align*}
& I_{4}-I_{5}-3 I_{1}+I_{2}=0 \\
& I_{2}=3 I_{1}+I_{5}-I_{1}-V_{2} \tag{2}\\
& I=3 I+\frac{1}{2}-\frac{V_{1}}{2}
\end{align*}
$$

$$
\begin{aligned}
& y_{11}=1 \mathrm{u} \\
& y_{12}=-0.5 \mathrm{u} \\
& y_{21}=2.5 \mathrm{u} \\
& y_{22}=-0.5 \mathrm{u}
\end{aligned}
$$

Problem3: Using the definitions, find the y-parameters of the two port network shown in figure.

y-parameters are given by
$I_{1}=y_{11} V_{1}+y_{12} V_{2}$
$I_{2}=y_{21} V_{1}+y_{22} V_{2}$

To find y-parameters

1. Let $V_{2}=0 \rightarrow$ Port 2 is short circuited Since $\boldsymbol{V}_{2}=\mathbf{0}$,
the value of dependent source $0.2 V_{2}=0$
From fig: $V_{1}=\mathbf{2 I}_{1}$

$$
\therefore y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=\frac{1}{2}=0.5 \mathrm{v}
$$

Apply KVL at output side

$4 I_{2}+10 V_{1}=0$
$4 I_{2}=-10 V_{1}$
$\therefore y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0}=-2.5 \mathrm{v}$
y -parameters are given by

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{aligned}
$$

To find y-parameters

1. Let $V_{1}=0 \rightarrow$ Port 1 is short circuited

Since $\boldsymbol{V}_{\mathbf{1}}=\mathbf{0}$,

the value of dependent source $10 V_{1}=0$
From fig: $V_{2}=4 I_{2}$

$$
\therefore y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{2}=0}=\frac{1}{4}=0.25 \text { v }
$$

Convert Current source to voltage source

Apply KVL at output side
$-2 I_{1}+0.4 V_{2}=0$
$0.4 V_{2}=2 I_{1}$
The y-parameters are

$$
[y]=\left[\begin{array}{cc}
0.5 & 0.2 \\
-2.5 & 0.25
\end{array}\right]
$$

$\therefore y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0}=0.2 \mathrm{v}$

Problem4: Determine y-parameters for the network shown in figure.

y-parameters are given by
$I_{1}=y_{11} V_{1}+y_{12} V_{2}$
$I_{2}=y_{21} V_{1}+y_{22} V_{2}$

Apply KCL at node 1
$I_{1}-I_{A}-I_{B}=0$
$I_{1}=I_{A}+I_{B}$
$I_{1}=\frac{V_{1}-0}{2}+\left(\frac{\left(V_{1}+2 V_{1}\right)-V_{2}}{3}\right)$
$I_{1}=\frac{3 V_{1}}{2}-\frac{V_{2}}{3}$

Apply KCL at node 2

$$
\begin{aligned}
& I_{B}+I_{2}-I_{C}=0 \\
& I_{2}=I_{C}-I_{B}
\end{aligned}
$$

$$
I_{2}=\frac{V_{2}-0}{1}-\left(\frac{\left(V_{1}+2 V_{1}\right)-V_{2}}{3}\right)
$$

$$
\begin{equation*}
I_{2}=-V_{1}+\frac{4 / 2}{3} \tag{2}
\end{equation*}
$$

Comparing eq(1) and eq(2) we get y parameters

$$
\begin{aligned}
y_{11} & =\frac{3}{2} u \\
y_{12} & =-\frac{1}{3} u \\
y_{21} & =-\frac{1}{4} u \\
y_{22} & =\frac{1}{3} u
\end{aligned}
$$

Problem 5: The bridged T-RC network is shown in figure. For the values given, find the y - parameters

Apply KCL at node 1

$$
\begin{align*}
& I_{1}-I_{3}-I_{6}=0 \\
& I_{1}=I_{3}+I_{6} \\
& I_{1}=\frac{V_{1}-V_{A}}{1 / 2}+\frac{V_{1}-V_{2}}{2 / S} \\
& I_{1}=\mathbf{2 V}-\mathbf{2} \quad S \quad S \\
& I_{1}=\left(\frac{S+4}{2}\right) V_{A}+\frac{{ }_{S}}{-} V_{1}-\frac{-}{2} V_{2}-2 V_{A} \tag{1}
\end{align*}
$$

Apply KCL at node 2

$$
\begin{align*}
& -I_{2}+I_{4}-=0 \\
& I_{2}=I_{4}-I_{6} \\
& I_{2}=\frac{V_{2}-V_{A}}{1 / 2}-\frac{V_{1}-V_{2}}{2 / S} \\
& I_{2}=\mathbf{2} V_{2}-2 V_{A}-\frac{S}{2} V_{1}+\frac{S}{2} V_{2} \\
& I_{2}=-\frac{S}{2} V_{1}+\left(\frac{S+4}{2}\right) V_{2}-2 V_{A} \ldots \tag{2}
\end{align*}
$$

Apply KCL at node A

$$
\begin{align*}
& I_{3}+I_{4}-I_{5}=0 \\
& I_{3}+I_{4}=I_{5} \\
& \frac{V_{1}-V_{A}}{1 / 2}+\frac{V_{2}-V_{A}}{1 / 2}=\frac{V_{A}-0}{2 / S} \\
& 2 V_{1}-2 V_{A}+2 V_{2}-2 V_{A}=\frac{s}{2} V_{A} \\
& \left(\frac{s}{2}+4\right) V_{A}=2 V_{1}+2 V_{2} \\
& \left(\frac{S+8}{2}\right) V_{A}=2 V_{1}+2 V_{2} \\
& V_{A}=\left(\frac{4}{S+8}\right) V_{1}+\left(\frac{4}{S+8}\right) V_{2} \ldots \tag{3}
\end{align*}
$$

Substitute eq (3)in eq (1)

$$
\begin{align*}
& I_{1}=\left(\frac{s+4}{2}\right) V_{1}+\frac{s}{2} V_{2}-2\left(\left(\frac{4}{s+8}\right) V_{1}+\left(\frac{4}{s+8}\right) V_{2}\right) \\
& I_{1}=\left(\frac{s+4}{2}-\frac{8}{s+8}\right) V_{1}-\left(\frac{s}{2}+\frac{8}{S+8}\right) V_{2} \\
& I_{1}=\left(\frac{s^{2}+12 S+32-16}{2(s+8)}\right) V_{1}-\left(\frac{s^{2}+8 S++16}{2(s+8)}\right) V_{2} \\
& I_{1}=\left(\frac{s^{2}+12 S+16}{2(s+8)}\right) V_{1}-\left(\frac{s^{2}+8 S+16}{2(s+8)}\right) V_{2} \ldots \text { (4) } \tag{4}
\end{align*}
$$

Substitute eq (3) in eq (2)

$$
\begin{align*}
& \boldsymbol{I}_{2}=-\frac{\boldsymbol{S}}{2} V_{1}+\left(\frac{s+4}{2}\right) V_{2}-2\left(\left(\frac{4}{s+8}\right) V_{1}+\left(\frac{4}{s+8}\right) V_{2}\right) \\
& \boldsymbol{I}_{\mathbf{2}}=\left(-\frac{s}{2}-\frac{\mathbf{8}}{\boldsymbol{s + 8}}\right) V_{1}+\left(\frac{\boldsymbol{S + 4}}{2}-\frac{\mathbf{8}}{\boldsymbol{s + 8}}\right) \boldsymbol{V}_{\mathbf{2}} \\
& I_{2}=-\left(\frac{s^{2}+8 S+16}{2(s+8)}\right) V_{1}+\left(\frac{s^{2}+12 S+16}{2(s+8)}\right) V_{2} \ldots(5) \tag{5}
\end{align*}
$$

y parameters are given by (eq(4) and eq(5))

$$
\begin{aligned}
& {[y]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\left(\frac{s^{2}+12 S+16}{2(s+8)}\right) & \left(\frac{s^{2}+8 S++16}{2(s+8)}\right) \\
-\left(\frac{s^{2}+8 S+16}{2(s+8)}\right) & \left(\frac{s^{2}+12 S++16}{2(s+8)}\right)
\end{array}\right]
\end{aligned}
$$

h Parameters or Hybrid Parameters

> Useful for constructing models for transistors.
> They are obtained by expressing voltages at the input port and current at the output port in terms of current at the input port and voltage at the output port.
$>\boldsymbol{I}$ and $\boldsymbol{V}_{\mathbf{2}}$ are independent variables
> I and $\boldsymbol{V}_{\mathbf{1}}$ are dependent variables

$$
\begin{aligned}
& V_{1}=f_{1}\left(I_{1}, V_{2}\right) \\
& I_{2}=f_{2}\left(I_{1}, V_{2}\right)
\end{aligned}
$$

Above equations and be written as

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \ldots \ldots e q(1) \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2} \ldots \ldots e q(2)
\end{aligned}
$$

In matrix form, equations can be written as

$$
V_{1}=h_{11} h_{12} \quad I_{1}
$$

$$
\begin{array}{llll}
I_{2} & h_{21} & h_{22} & V_{2}
\end{array}
$$

h Parameters or Hybrid Parameters

> The individual h Parameters can be obtained as follows

1. To obtain \boldsymbol{h}_{11}

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

Let $V_{2}=\mathbf{0} \rightarrow$ Port 2 is short circuited
From eq (1) $\quad \boldsymbol{V}_{\mathbf{1}}=\boldsymbol{h}_{\mathbf{1 1}} \boldsymbol{I}_{\mathbf{1}}$

$$
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0} \Omega
$$

The parameter h_{11} is called short circuit input impedance.
2. To obtain \boldsymbol{h}_{21}

Let $V_{2}=0 \rightarrow$ Port 2 is short circuited
From eq (2) $\quad \boldsymbol{I}_{\mathbf{2}}=\boldsymbol{h}_{\mathbf{2 1}} \boldsymbol{I}_{\mathbf{1}}$

$$
h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}
$$

The parameter h_{21} is called short circuit forward current gain. It is unitless.

h Parameters or Hybrid Parameters

3. To obtain \boldsymbol{h}_{12}

Let $I_{1}=0 \rightarrow$ Port 1 is open circuited

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

From eq (1) $\quad \boldsymbol{V}_{\mathbf{1}}=\boldsymbol{h}_{\mathbf{1 2}} \boldsymbol{V}_{\mathbf{2}}$

$$
h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0}
$$

The parameter h_{12} is called open circuit reverse voltage gain. It is unitless.
4. To obtain \boldsymbol{h}_{22}

Let $I_{1}=0 \rightarrow$ Port 1 is open circuited

$$
\begin{gathered}
\text { From eq (2) } \boldsymbol{I}_{\mathbf{2}}=\boldsymbol{h}_{\mathbf{2 2}} \boldsymbol{V}_{\mathbf{2}} \\
\qquad \boldsymbol{h}_{\mathbf{2 2}}=\frac{\boldsymbol{I}_{2}}{\boldsymbol{V}_{\mathbf{2}}} \boldsymbol{I}_{\mathbf{1}=\mathbf{0}} v
\end{gathered}
$$

The parameter h_{22} is called open circuit output admittance.

h Parameters or Hybrid Parameters

> Equivalent Network in terms of h parameters

$>$ Conditions for Symmetry
$>$ Conditions for Reciprocity

$$
h_{11} h_{22}-h_{12} h_{21}=1
$$

$$
h_{12}=-h_{21}
$$

Problem1: Find the h-parameters of the network shown in figure. Give its equivalent Circuit.

h -parameters are given by

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

To find h-parameters

1. Let $=0 \rightarrow$ Port 2 is short circuited

Since $V_{2}=0,4 \Omega$ resistor is short circuited.
Apply KCL at node (a)

$I_{a}=I_{1}+I_{2}$
By current divider rule

$$
\begin{aligned}
& I_{2}=-I_{1}\left[\frac{2}{2+2}\right]=\frac{-I_{1}}{2} \\
& \frac{I_{2}}{I_{1}}=\frac{-1}{2} \ldots .(1)
\end{aligned}
$$

Hence $h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}=\frac{-1}{2}$

Apply KVL at the input side

$$
\left.V_{1}=I_{1}+I_{a}(2)=I_{1}+2 I I_{1}+I_{2}\right) \quad \begin{array}{ll}
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}=2 \Omega
\end{array}
$$

Subsitiute for \boldsymbol{L} from eq(1)

$$
\begin{aligned}
& V_{1}=3 I_{1}+2 I_{2}=3 I_{1}+2\left(\frac{-1}{2} I_{1}\right) \\
& V_{1}=2 I_{1}
\end{aligned}
$$

To find h-parameters
2. Let $I_{1}=0 \rightarrow$ Port 1 is open circuited

Current I_{b} is given by
$I_{b}=\frac{V_{1}}{2}$

Also $\boldsymbol{I}_{b}=\frac{V_{2}-V_{1}}{2}$
Equating equations of $\mathbf{I}_{\mathbf{b}}$

$$
\frac{V_{1}}{2}=\frac{V_{2}-V_{1}}{2}
$$

$$
V_{2}=2 V_{1}
$$

Hence, $h_{12}=\left.V_{V_{1}}^{V_{2}}\right|_{I_{1}=0}=\frac{1}{2}$

Apply KCL at the node \boldsymbol{V}_{2}

$$
\begin{aligned}
& I_{2}=I_{a}+I_{b} \\
& I_{2}=\frac{V_{2}}{4}+\frac{V_{2}-V_{1}}{2} \\
& I_{2}=\frac{V_{2}}{4}+V_{2}-\left(\frac{1}{2}\right) V_{2} \\
& I_{2}=\frac{V_{2}}{2}
\end{aligned}
$$

Hence, $h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{h_{1}=0}=\frac{1}{2} v$

The h-parameters are

$$
[h]=\left[\begin{array}{cc}
2 & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

Problem2: Find the h-parameters for the two-port network shown in figure .

$$
\begin{aligned}
& \text { h-parameters are given by } \\
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

To find h-parameters

1. Let $=0 \rightarrow$ Port 2 is short circuited

Since $V_{2}=0,1 \Omega$ resistor is short circuited.

From Figure

$$
\begin{equation*}
I_{2}=0.5 V_{1} \tag{1}
\end{equation*}
$$

Redraw circuit by making positive value of dependent current source by reversing its direction

Apply KVL to loop 1

$$
\begin{align*}
& V_{1}-3 I_{1}-4\left(I_{1}+I_{2}\right)-3 I_{2}=0 \\
& V_{1}=7 I_{1}+7 I_{2} \ldots(2) \tag{2}
\end{align*}
$$

Substitute eq(1) in eq(2)
$V_{1}=7 I_{1}+7\left(0.5 V_{1}\right)$
$V_{1}=7 I_{1}+3.5 V_{1}$
$-2.5 V_{1}=7 I_{1}$
$\frac{V_{1}}{I_{1}}=-2.8$

$$
\text { Hence, } h_{11}=\frac{V_{1}}{\left.I_{1}\right|_{V_{2}=0}}{ }=-2.8 \Omega
$$

$$
\begin{aligned}
& I_{2}=0.5 V_{1}=0.5\left(-2.8 I_{1}\right) \\
& I_{\underline{2}}=-1.4 \\
& I_{1}=-1
\end{aligned}
$$

Substitute eq(3) in eq(1)

$$
\text { Hence, } h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}=-1.4
$$

$$
V_{1}=-2.8 I_{1} \ldots(3)
$$

To find h-parameters

2. Let $I_{1}=0 \rightarrow$ Port 1 is open circuited Apply KCL to node 2

$$
\begin{equation*}
I_{2}=\frac{V_{2}}{1}+0.5 V \tag{4}
\end{equation*}
$$

Apply KVL to loop 1

$V_{1}=4\left(0.5 V_{1}\right)+3 I_{2}$
$V_{1}=2 V_{1}+3 I_{2}$
$-V_{1}=3 I_{2} \ldots$ (5)

Substituting eq(5) in eq(4)
$I_{2}=\frac{V_{2}}{1}+0.5\left(-3 I_{2}\right)$
2. $5 I_{2}=V_{2}$
$\frac{I_{2}}{V_{2}}=\frac{1}{2.5}=0.4$
hence, $h_{22}=\left.\frac{I_{2}}{V_{2} h_{1}=0}\right|_{0.4 v}=0$.

Substituting eq(4) in eq(5)
$-V_{1}=3\left(\left(V_{2}+0.5 V_{1}\right)\right)$
$-V_{1}=3 V_{2}+1.5 V_{1}$
$-2.5 V_{1}=3 V_{2}$
$V_{1}=-1.2$
V_{2}

Hence, $h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0}=-1.2$

Problem3: Find the h-parameters after writing transformed network.

h -parameters are given by
$V_{1}=h_{11} I_{1}+h_{12} V_{2}$
$I_{2}=h_{21} I_{1}+h_{22} V_{2}$
Transformed network

To find h-parameters

1. Let $V_{2}=0 \rightarrow$ Port 2 is short circuited

From Figure, apply current divider rule

$$
\begin{equation*}
I_{2}=-I_{1}\left(\frac{s}{s+\frac{1}{s}}\right)=-\left(\frac{s^{2}}{s^{2}+1}\right) I_{1} \tag{1}
\end{equation*}
$$

Apply KVL at the input side

$$
\begin{gather*}
V_{1}-\frac{1}{S} I_{1}-S\left(I_{1}+I_{2}\right)=0 \\
V_{1}=\left(\frac{1}{S}+S\right) I_{1}+S\left(I_{2}\right) \tag{2}
\end{gather*}
$$

Substitute eq(1) in eq(2)

$$
\begin{aligned}
& \quad V_{1}=\left(\frac{1}{S}+S\right) I_{1}+S\left[-\left(\frac{S^{2}}{S^{2}+1}\right) I_{1}\right] \\
& V_{1}=\sqrt{1+}\left[2\left(\frac{}{S}\right)-\left(\frac{S^{3}}{S^{2}+1}\right)\right] I_{1} \\
& V_{1}=\left[\frac{\left(1+S^{2}\right)\left(s^{2}+1\right)-S^{4}}{S\left(S^{2}+1\right)}\right] I_{1} \\
& V_{1}=\frac{1+2 S^{2}+S^{4}-S^{4}}{S\left(S^{2}+1\right)} I_{1} \\
& \frac{V_{1}}{I_{1}}=\frac{2 S^{2}+1}{S\left(S^{2}+1\right)}
\end{aligned}
$$

$$
\text { Hence, } h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}=\frac{2 S^{2}+1}{S\left(S^{2}+1\right)} \Omega
$$

From Eq (1)

$$
\frac{I_{2}}{I_{1}}=\left(\frac{s^{2}}{s^{2}+1}\right)
$$

Hence, $\quad h_{21}=\left.\frac{I}{I_{1}}\right|_{V_{2}=0}=-\frac{S^{2}}{S^{2}+1}$

To find h-parameters

2. Let $I_{1}=0 \rightarrow$ Port 1 is open circuited

Apply KVL at the output side
$V_{2}-\frac{1}{S} I_{2}-S I_{2}=0$
$-\left(\frac{1}{s}+S\right) I_{2}=-V_{2}$
$\left(\frac{1+S^{2}}{S}\right) I_{2}=V_{2} \quad \rightarrow I_{2}=\left(\frac{s}{s^{2}+1}\right)^{V}-$ (3)
$\frac{\boldsymbol{I}_{2}}{\boldsymbol{V}_{2}}=\left(\frac{\boldsymbol{S}}{\boldsymbol{S}^{2}+1}\right) \quad$ hence, $\boldsymbol{h}_{22}={\frac{I_{2}}{V_{2}}}_{I^{\prime}=0}=\frac{S}{S^{2}+1} v$

From Figure

$$
V_{1}=s I_{2}--(4)
$$

$$
[h]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]
$$

Substitute eq (3) in eq (4)

$$
\begin{aligned}
& V_{1}=s\left(\frac{S}{S^{2}+1}\right) V_{2} \\
& \frac{V_{1}}{V_{2}}=s\left(\frac{S}{S^{2}+1}\right)
\end{aligned}
$$

$$
[h]=\left[\begin{array}{cc}
\frac{2 S^{2}+1}{S\left(S^{2}+1\right)} & \frac{S^{2}}{S^{2}+1} \\
-\frac{S^{2}}{S^{2}+1} & \frac{S}{S^{2}+1}
\end{array}\right]
$$

$$
\text { Hence, } h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0}={ }_{S^{2}} S^{2}
$$

ABCD Parameters or Transmission Parameters

> Used in the analysis of power transmission in which input port is referred as the sending end while the output port is referred as the receiving end.
$>$ There are obtained by expressing voltage $\boldsymbol{V}_{\mathbf{1}}$ and current $\boldsymbol{I}_{\mathbf{1}}$ at the input port in terms of voltage $\boldsymbol{V}_{\mathbf{2}}$ and
 current \boldsymbol{I}_{2} at the output port
$>\boldsymbol{V}_{2}$ and $\boldsymbol{I}_{\mathbf{2}}$ are independent variables
$>\boldsymbol{V}_{1}$ and $\boldsymbol{I}_{\mathbf{1}}$ are dependent variables

$$
\begin{aligned}
& V_{1}=f_{1}\left(V_{2},-I_{2}\right) \\
& I_{1}=f_{2}\left(V_{2},-I_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
V_{1} \\
I_{1}
\end{gathered} \begin{array}{ccc}
A & B & V_{2} \\
& C & D
\end{array}
$$

Above equations and be written as

ABCD Parameters or Transmission Parameters

> The individual ABCD Parameters can be obtained as follows

1. To obtain A

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left(-I_{2}\right) \\
& I_{1}=C V_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

Let $-I_{2}=\mathbf{0} \rightarrow$ Port 2 is open circuited
From eq (1) $\quad \boldsymbol{V}_{\mathbf{1}}=\boldsymbol{A} \boldsymbol{V}_{\mathbf{2}}$

$$
A=\left.\frac{V_{1}}{V_{2}}\right|_{-I_{2}=0}
$$

The parameter A is called open circuit reverse voltage gain. It is unitless
2. To obtain C

Let $-I_{2}=0 \rightarrow$ Port 2 is short circuited
From eq (2) $\quad \boldsymbol{I}_{\mathbf{1}}=\boldsymbol{C} \boldsymbol{V}_{\mathbf{2}}$

$$
C=\left.\frac{I_{1}}{V_{2}}\right|_{-I_{2}=0} \mho
$$

The parameter C is called open circuit reverse transfer admittance.

ABCD Parameters or Transmission Parameters

3. To obtain \boldsymbol{B}

Let $V_{2}=0 \rightarrow$ Port 2 is short circuited

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left(-I_{2}\right) \\
& I_{1}=C V_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

From eq (1) $\quad \boldsymbol{V}_{\mathbf{1}}=\mathbf{B}(-)$

$$
B=\left.\frac{V_{1}}{-I_{2}}\right|_{V_{2}=0} \Omega
$$

The parameter B is called short circuit reverse transfer impedance.
4. To obtain D

Let $V_{2}=0 \rightarrow$ Port 2 is short circuited
From eq (2) $\quad \boldsymbol{I}_{\mathbf{1}}=\boldsymbol{D}(-)$

$$
D=\left.\frac{I_{1}}{-I_{2}}\right|_{V_{2}=0}
$$

The parameter D is called short circuit reverse current gain. It is unitless

ABCD Parameters or Transmission Parameters

Reason for name transmission parameters and negative sign of $\boldsymbol{I}_{\mathbf{2}}$

- ABCD parameters are used in the analysis of power transmission in which input port is referred as the sending end while the output port is referred as the receiving end.
- In transmission theory, the sending end variables are expressed in terms of receiving end variables.
- Analogous to the equations of the $A B C D$ parameters. Hence the name transmission parameters.
- Also used for analysis of two or more networks connected in cascade. Hence it is also termed as chain parameters.

(a) Transmission line of length I

(b) Two port network

ABCD Parameters or Transmission Parameters

$>$ From figure current direction of $\boldsymbol{I}_{\boldsymbol{R}}$ is away from output port but in two port network $\boldsymbol{I}_{\mathbf{2}}$ it is towards output port. Hence it is assumed to be $-\boldsymbol{I}_{2}$
$>$ Conditions for Symmetry

$$
A=D
$$

> Conditions for Reciprocity

$$
A D-B C=1
$$

Problem 1: Determine the transmission parameters for the network shown in figure.

Transmission-parameters are given by
Rearranging eq (2)
$Y_{1}=A V_{2}+B\left(-I_{2}\right)$

Apply KVL at the input side

$$
\begin{aligned}
& -2 I_{1}-3 V_{2}+V_{1}=0 \\
& V_{1}=2 I_{1}+3 V_{2} \ldots(1)
\end{aligned}
$$

Apply KCL at the output side

$$
\begin{align*}
& I_{2}=5 I_{1}+I_{A}=5 I_{1}+\frac{V_{2}}{5} \\
& 5 I_{1}=-\frac{V_{2}}{5}+I_{2} \tag{4}\\
& I_{1}=-\frac{V_{2}}{25}+\frac{1}{5} I_{2} \ldots . \text { (2) } \tag{2}
\end{align*}
$$

$$
I=-\frac{V_{2}}{25}+\left(-\frac{1}{5}\right)\left(-I_{2}\right)
$$

$$
\begin{align*}
& \text { Substitute (2) in eq(1) } \\
& \stackrel{1}{V}\left(-\frac{2}{25}+\frac{-}{5} I_{2}\right)+3 V_{2} \\
& V_{1}=\left(3-\frac{2}{25}\right) V_{2}+\frac{2}{5} I_{2} \\
& V_{1}=\left(\frac{B}{25}\right) V_{2}+\frac{2}{5} I_{2} \\
& V_{1}=\left(\frac{B}{25}\right) V_{2}+\left(-\frac{2}{5}\right)\left(-I_{2}\right) \tag{3}
\end{align*}
$$

Problem 2: Find the transmission or general parameters for the circuit shown in figure.

To find transmission parameters

1. Let $-I_{2}=0 \rightarrow$ Port 2 is open circuited

From Figure,

$$
\begin{aligned}
& V_{2}=5 I_{1} \\
& I_{1}=\frac{V_{2}}{5} \ldots(1)
\end{aligned}
$$

Apply KVL at the input side

$$
\begin{align*}
& -1 I_{1}-5 I_{1}+V_{1}=0 \\
& 6 I_{1}=V_{1} \cdots(2) \tag{2}
\end{align*}
$$

Substitute eq(1) in eq(2)
$6\left(\frac{V_{2}}{5}\right)=V_{1}$
$V_{1}=\frac{6}{5} V_{2}$

$$
\text { From eq }(3), A=\left.\frac{V_{1}}{V_{2}}\right|_{-I_{2}=0}=\frac{6}{5}
$$

To find transmission parameters

2. Let $V_{2}=0 \rightarrow$ Port 2 is short circuited

From Figure, apply current divider rule
$I_{2}=-I_{1}\left(\frac{5}{5+2}\right)$
$-I_{2}=I_{1}\left(\frac{5}{7}\right)$
$\frac{I_{1}}{I_{2}}=-\frac{7}{5}$
From eq (4), $D=\frac{I_{1}}{-I_{2}} V_{2}=0 \quad=\frac{7}{5}$

$$
\begin{align*}
& \left(-\frac{42}{5}+5\right) I_{2}=V_{1} \tag{4}\\
& \left(-\frac{17}{5}\right) I_{2}=V_{1} \\
& \left(\frac{17}{5}\right)\left(-I_{2}\right)=V_{1} \ldots \tag{6}
\end{align*}
$$

Apply KVL at the input side
$-1 I_{1}-5\left(I_{1}+I_{2}\right)+V_{1}=0$
$-6 I_{1}-5 I_{2}=-V_{1}$
From ©q (6), $B=\left.\frac{V_{1}}{-I_{2}}\right|_{V_{2}=0}=\frac{17}{5} \Omega$

Substitute eq(4) I_{1} for in eq(5)

$$
6\left(-\frac{-}{5}\right) I_{2}+5 I_{2}=V_{1}
$$

$$
\left[\begin{array}{ll}
A & B \tag{5}\\
C & D
\end{array}\right]=\left[\begin{array}{ll}
\frac{6}{5} & \frac{17}{5} \\
\frac{1}{5} & \frac{7}{5}
\end{array}\right]
$$

Problem 3: Find the transmission parameters for the network shown in figure.

To find transmission parameters

1. Let $-I_{2}=0 \rightarrow$ Port 2 is open circuited

Apply KCL at node a

$$
I_{1}=0.1 V_{2}+I
$$

$$
I=I_{1}-0.1 V_{2}
$$

From figure
$V_{2}=4 I=4\left(I_{1}-0.1 V_{2}\right)$

$$
\text { 1. } 4 V_{2}=4 I_{1} \ldots(1)
$$

From © (1) $C==\frac{I_{1}}{V_{2_{-I}}=0}=\frac{7}{20} \mho$

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left(-I_{2}\right) \\
& I_{1}=C V_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

Apply KVL at the input side
$V_{1}-5 I_{1}-V_{a}=0$
$V_{a}=V_{1}-5 I_{1}$
Transmission-parameters are given by

$$
\begin{align*}
& \text { Substitute eq(1) for } I_{1} \text { in eq (2) } \tag{2}\\
& V=V_{7}^{=}-5\left(\underset{7}{7} V_{2}\right)=V_{1}-\frac{-}{4} V_{2} \tag{3}
\end{align*}
$$

Substitute for Va from eq(3) in eq(4)

$$
\begin{gather*}
V_{1}-\underset{1}{4} V_{2}+0.3 V_{1}=V_{2} \\
1 . \mathbf{3}_{1}^{4}=\frac{11}{4} V_{2}
\end{gather*}
$$

To find transmission parameters

2. Let $V_{2}=0 \rightarrow$ Port 2 is short circuited

Hence 4Ω get short circuited and $0.1 V_{2}$ get open circuited

From figure

$$
\begin{equation*}
-I_{2}=I_{1} \tag{6}
\end{equation*}
$$

From ${ }^{1}$

$$
(4)^{,} D=\left.\frac{I_{1}}{-I 2}\right|_{V_{2}=0}=1
$$

Apply KVL to the loop

$$
\begin{aligned}
& V_{1}-5 I_{1}+0.3 V_{1}=0 \\
& I_{1}=\frac{1.3 V_{1}}{5}=\frac{13 V_{1}}{50}=-I_{2} \\
& -I_{2}=\frac{13}{50} V_{1} \cdots(7)
\end{aligned}
$$

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
\frac{55}{26} & \frac{50}{13} \\
\frac{7}{20} & 1
\end{array}\right]
$$

$$
\text { From eq(7), } B=\left.\frac{V_{1}}{-I_{2} V_{2}=0}\right|_{13}=\frac{50}{13} \Omega
$$

Problem 4: Find the transmission parameters for the network shown in figure.

Transmission-parameters are given by

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left(-I_{2}\right) \\
& I_{1}=C V_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

Apply KVL at the input side

To find transmission parameters

$$
\begin{align*}
& V_{1}-1 I_{1}-s I_{1}=0 \\
& V_{1}=(1+s) I_{1} \tag{2}
\end{align*}
$$

1. Let $-I_{2}=0 \rightarrow$ Port 2 is open circuited Substitute for I_{1} from eq (1) in eq(2)

From figure

$$
\begin{equation*}
V_{2}=s I_{1} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& V_{1}=(1+s)\left(\frac{V_{2}}{s}\right) \\
& \frac{V_{1}}{V_{2}}=\frac{(1+s)}{s} \quad \ldots(3) \tag{3}
\end{align*}
$$

From ©l (1), $C==\left.\frac{I_{1}}{V_{2}}\right|_{-I_{2}=0}=\frac{1}{s} \mho$

$$
\text { From eq (3), } A={\left.\frac{V_{1}}{V_{2}}\right|_{-I_{2}=0}}=\frac{(1+s)}{s}
$$

To find transmission parameters
2. Let $V_{2}=0 \rightarrow$ Port 2 is short circuited

From Figure, apply current divider rule

$$
-I_{2}=I_{1}\left(\frac{s}{s+\frac{1}{s}}\right)=\left(\frac{s^{2}}{s^{2}+1}\right) I_{1} \ldots
$$

From eq (4), $D=\frac{I_{1}}{-\left.\left.\right|_{2}\right|_{V_{2}=0}}=\frac{S^{2}+1}{S^{2}}$
Apply KVL at the input side

$$
\begin{array}{r}
V_{1}-1 I_{1}-S\left(I_{1}+I_{2}\right)=0 \\
V_{1}=(1+S) I_{1}+S I_{2} \ldots \ldots \tag{5}
\end{array}
$$

$$
\begin{aligned}
V_{1} & =\left(\frac{1+S+S^{2}+S^{3}-S^{3}}{S^{2}}\right)\left(-I_{2}\right) \\
V_{1} & =\left(\frac{1+S+S^{2}}{S^{2}}\right)\left(-I_{2}\right)
\end{aligned}
$$

From © (6), $B=\left.\frac{V_{1}}{-I_{2}}\right|_{V_{2}=0}=\frac{1+S+S^{2}}{S^{2}} \Omega$
Substitute for I_{1} from eq (4) in eq(5)

$$
\begin{aligned}
& V_{1}=(1+S)\left(-\frac{S^{2}+1}{S^{2}}\right)+S I_{2} \\
& V_{1}=(1+S)\left(-\frac{S^{2}+1}{S^{2}}\right)-S\left(-I_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
\frac{(1+s)}{s} & \frac{1+S+S^{2}}{S^{2}} \\
\frac{1}{s} & \frac{S^{2}+1}{S^{2}}
\end{array}\right]
$$

Problem 5: For the network shown in figure, determine the ABCD parameters.

To find transmission parameters

$$
\text { 1. Let }-I_{2}=0 \rightarrow \text { Port } 2 \text { is open circuited }
$$

Applying KVL to closed path $1-a-b-1^{\prime}-a$, we get,

$$
-I_{1} R_{1}-I_{1} R_{3}+V_{1}=0
$$

$$
\begin{equation*}
\therefore \quad \mathrm{V}_{1}=\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right) \mathrm{I}_{1} \tag{1}
\end{equation*}
$$

At output side,

$$
\mathrm{V}_{2}=\alpha \mathrm{R}_{2} \mathrm{I}_{1}+\mathrm{I}_{1} \mathrm{R}_{3}=\left(\mathrm{R}_{3}+\alpha \mathrm{R}_{2}\right) \mathrm{I}_{1}
$$

Transmission-parameters are given by

$$
\begin{aligned}
& V_{1}=A V_{2}+B\left(-I_{2}\right) \\
& I_{1}=C V_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
I_{1}=\frac{V_{2}}{\left(R_{3}+\alpha R_{2}\right)} \tag{2}
\end{equation*}
$$

Hence from equation (2),

$$
\mathrm{C}=\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{2}}\right|_{-\mathrm{I}_{2}=0}=\frac{1}{\left(\mathrm{R}_{3}+\alpha \mathrm{R}_{2}\right)} \circlearrowright
$$

$$
\begin{equation*}
V_{1}=\left(R_{1}+R_{3}\right)\left[\frac{V_{2}}{\left(R_{3}+\alpha R_{2}\right)}\right]=\left[\frac{R_{1}+R_{3}}{R_{3}+\alpha R_{2}}\right] V_{2} \tag{3}
\end{equation*}
$$

To find transmission parameters

2. Let $\boldsymbol{V}_{2}=\mathbf{0} \rightarrow$ Port 2 is short circuited Applying KVL to closed path, $1-\mathrm{a}-\mathrm{b}-\mathrm{l}^{\prime}-1$, we get, $-I_{1} R_{1}-R_{3}\left(I_{1}+I_{2}\right)+V_{1}=0$

$$
\begin{equation*}
\therefore \quad \mathrm{V}_{1}=\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right) \mathrm{I}_{1}+\mathrm{R}_{2} \mathrm{I}_{2} \tag{4}
\end{equation*}
$$

Applying KVL to closed path $\mathrm{a}-2-2^{\prime}-\mathrm{b}-\mathrm{a}$, we get,

$$
\begin{align*}
& +I_{2} R_{2}+\alpha R_{2} I_{1}+R_{3}\left(I_{1}+I_{2}\right)=0 \\
& \therefore I_{2} R_{2}+\alpha R_{2} I_{1}+I_{1} R_{3}+I_{2} R_{3}=0 \\
& \therefore\left[R_{3}+\alpha R_{2}\right] I_{1}=-\left(R_{2}+R_{3}\right) I_{2} \\
& \left.\quad i . \& R_{3}+\alpha R_{2}\right) I_{1}=\left(R_{2}+R_{3}\right)\left(-I_{2}\right) \tag{5}
\end{align*}
$$

from equation (3),

$$
A=\left.\frac{V_{1}}{V_{2}}\right|_{-I_{2}=0}=\frac{R_{1}+R_{3}}{\left(R_{3}+\alpha R_{2}\right)}
$$

From equation (5),

$$
\begin{equation*}
I_{1}=\frac{R_{2}+R_{3}}{R_{3}+\alpha R_{2}}\left(-I_{2}\right) \tag{6}
\end{equation*}
$$

from equation (6) we get,

$$
D=\left.\frac{I_{1}}{-I_{2}}\right|_{V_{2}=0}=\frac{R_{2}+R_{3}}{R_{3}+\alpha R_{2}}
$$

Substitute for I_{1} from eq (6) in eq(4)

$$
\begin{aligned}
& V_{1}=\left(R_{1}+R_{3}\right)\left[\frac{R_{2}+R_{3}}{R_{3}+\alpha \cdot R_{2}}\right]\left(-I_{2}\right)+R_{2} I_{2} \\
& V_{1}=\frac{\left(R_{1}+R_{3}\right)\left(R_{2}+R_{3}\right)}{R_{3}+\alpha \cdot R_{2}}\left(-I_{2}\right)-R_{2}\left(-I_{2}\right) \quad \text {.. Adjusting }-I_{2} \text { in } 2^{n d} \text { term } \\
& V_{1}=\left[\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}+R_{3}^{2}-R_{2} R_{3}-\alpha \cdot R_{2}^{2}}{R_{3}+\alpha \cdot R_{2}}\right]\left(-I_{2}\right) \\
& V_{1}=\left[\frac{R_{1} R_{2}+R_{1} R_{3}+R_{3}^{2}-\alpha \cdot R_{2}^{2}}{R_{3}+\alpha \cdot R_{2}}\right]\left(-I_{2}\right) \quad \ldots(7)
\end{aligned}
$$

from equation (7), we get,

$$
A=\left.\frac{I_{1}}{-I_{2}}\right|_{V_{2}=0}=\frac{R_{1} R_{2}+R_{1} R_{3} \div R_{3}^{2}-\alpha \cdot R_{2}^{2}}{R_{3}+\sigma \cdot R_{2}} \Omega
$$

Problem 6: Determine the transmission parameters of the network shown.

To find transmission parameters

1. Let $-I_{2}=0 \rightarrow$ Port 2 is open circuited

Applying KVL to loop $1-\mathrm{A}-\mathrm{D}-1^{\prime}-1$, we get,

$$
(-j \omega L) I_{3}+V_{1}=0
$$

$$
V_{1}=(j \omega L) I_{3}
$$

Applying KVL to loop A-B-C-D-A, we get,

$$
-R I_{4}-\left(\frac{1}{j \omega C}\right) I_{4}+j \omega L I_{3}=0
$$

$$
\begin{aligned}
& \text { Transmission-parameters are } \\
& \text { given by } \\
& V_{1}=A V_{2}+B\left(-I_{2}\right) \\
& I_{1}=C V_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

$(j \omega L) I_{3}=\left[R+\frac{1}{j \omega C}\right] I_{4}=\left[\frac{j \omega R C+1}{j \omega C}\right] I_{4}$
Applying current divider rule to get I_{4}

$$
I_{4}=I_{1}\left[\frac{j \omega L}{R+j \omega L+\frac{1}{j \omega C}}\right]=\left[\frac{-\omega^{2} L C}{1-\omega^{2} L C+j \omega R C}\right] I_{1}
$$

Also

$$
\begin{equation*}
V_{2}=\left(\frac{1}{j \omega C}\right) I_{4}=\left(\frac{1}{j \omega C}\right)\left[\frac{-\omega^{2} L C}{1-\omega^{2} L C+j \omega R C}\right] I_{1}=\left[\frac{j \omega L}{1-\omega^{2} L C+j \omega R C}\right] I_{1} \tag{1}
\end{equation*}
$$

From eq (1)

$$
\begin{align*}
& \therefore \quad C=\left.\frac{I_{1}}{V_{2}}\right|_{-I_{2}=0}=\frac{1-\omega^{2} L C+j \omega R C}{j \omega L} \\
& V_{1}=j \omega L\left(I_{3}\right)=j \omega L\left[\frac{j \omega R C+1}{(j \omega C)(J \omega L)}\right] I_{4}=\left[\frac{j \omega R C+1}{j \omega C}\right]\left[\frac{-\omega^{2} L C}{1-\omega^{2} L C+i \omega R C}\right] \tag{2}
\end{align*}
$$

Dividing equation (2) by (1),
$A=\left.\frac{V_{1}}{V_{2}}\right|_{-I_{2}=0}=\left[\frac{j \omega R C+1}{j \omega C}\right]\left[\frac{-\omega^{2} L C}{1-\omega^{2} L C+j \omega R C}\right]\left[\frac{1-\omega^{2} L C+j \omega R C}{j \omega L}\right]=\frac{1+j \omega R C}{1-\omega^{2} L C+j \omega R C}$

To find transmission parameters

2. Let $V_{2}=0 \rightarrow$ Port 2 is short circuited

Applying KVL to loop $1-\mathrm{A}-\mathrm{B}-\mathrm{I}^{\prime}-1$, we get,

$$
V_{1}=j \omega L\left(I_{1}+I_{2}\right)=j \omega L I_{1}+j \omega L I_{2}
$$

Applỳng KVL to loop $\mathrm{A}-2-2^{\prime}-\mathrm{B}-\mathrm{A}$, we get,

$$
R I_{2}+j \omega L I_{1}+j \omega L I_{2}=0
$$

$$
\begin{align*}
& j \omega L I_{1}+(R+j \omega L) I_{2}=0 \\
& j \omega L I_{1}=-(R+j \omega L) I_{2}=(R+j \omega L)\left(-I_{2}\right) \tag{4}
\end{align*}
$$

Putting value of I_{1} in equation (3),

$$
D=\left.\frac{I_{1}}{-I_{2}}\right|_{V_{2}=0}=\frac{R+j \omega L}{j \omega L}
$$

$$
\begin{aligned}
V_{1} & =(R+j \omega L)\left(-I_{2}\right)-j \omega L\left(-I_{2}\right) \\
B & =\left.\frac{V_{1}}{-I_{2}}\right|_{V_{2}=0}=\mathbf{R}
\end{aligned}
$$

From equation (4), I_{1} is given by,

$$
I_{1}=\left[\frac{R+j \omega L}{j \omega L}\right]\left(-I_{2}\right)
$$

Summary of Two Port Network Parameters

Parameters	Variables		Equations	Conditions of	
	Dependent	Independent		Symmetry	Reciprocity
z parameter	\boldsymbol{V}_{1} and \boldsymbol{V}_{2}	\boldsymbol{I}_{1} and \boldsymbol{I}_{2}	$\begin{aligned} & V_{1}=z_{11} I_{1}+z_{12} I_{2} \\ & V_{2}=z_{21} I_{1}+z_{22} I_{2} \end{aligned}$	$z_{11}=z_{22}$	$z_{12}=z_{21}$
y parameter	\boldsymbol{I}_{1} and \boldsymbol{I}_{2}	\boldsymbol{V}_{1} and \boldsymbol{V}_{2}	$\begin{aligned} & I_{1}=y_{11} V_{1}+y_{12} V_{2} \\ & I_{2}=y_{21} V_{1}+y_{22} V_{2} \end{aligned}$	$y_{11}=y_{22}$	$y_{12}=y_{21}$
h parameter	\boldsymbol{V}_{1} and $\boldsymbol{I}_{\mathbf{2}}$	\boldsymbol{I}_{1} and \boldsymbol{V}_{2}	$\begin{aligned} & V_{1}=h_{11} I_{1}+h_{12} V_{2} \\ & I_{2}=h_{21} I_{1}+h_{22} V_{2} \end{aligned}$	$\begin{aligned} & h_{11} h_{22}-h_{12} h_{21} \\ & =1 \end{aligned}$	$h_{12}=-h_{21}$
ABCD parameter	\boldsymbol{V}_{1} and \boldsymbol{I}_{1}	\boldsymbol{V}_{2} and \boldsymbol{I}_{2}	$\begin{aligned} & V_{1}=A V_{2}+B\left(-I_{2}\right) \\ & I_{1}=C V_{2}+D\left(-I_{2}\right) \end{aligned}$	$\boldsymbol{A}=\boldsymbol{D}$	$A D-B C=1$

Interrelationships Between Parameters

z-parameters in terms of other parameters

The equations for z-parameters are as follows

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \ldots(A) \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2} \ldots(B)
\end{aligned}
$$

[A] In terms of y-parameters

The equations for y-parameters are as follows

$$
\begin{align*}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \ldots \tag{1}\\
& I_{2}=y_{21} V_{1}+y_{22} V_{2} \tag{2}
\end{align*}
$$

Writing Equations in Matrix Form

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

Solve equations using Cramer's rule for $\boldsymbol{V}_{\mathbf{1}}$ and $\boldsymbol{V}_{\mathbf{2}}$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right| \\
\Delta_{1} & =\left|\begin{array}{ll}
I_{1} & y_{12} \\
I_{2} & y_{22}
\end{array}\right|
\end{aligned}
$$

$$
V_{1}=\frac{\Delta_{1}}{\Delta}=\frac{\left|\begin{array}{ll}
I_{1} & y_{12} \\
I_{2} & y_{22}
\end{array}\right|}{\left|\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right|}
$$

$$
V_{1}=\frac{I_{1} y_{22}-I_{2} y_{12}}{y_{11} y_{22}-y_{12} y_{21}}
$$

$$
\text { Let, } \Delta y=\boldsymbol{y}_{11} \boldsymbol{y}_{22}-\boldsymbol{y}_{12} \boldsymbol{y}_{21}
$$

$$
\begin{equation*}
V_{1}=\frac{y_{2}}{\Delta y} I_{1}+\frac{-y_{12}}{\Delta y} I_{2} \ldots(\tag{3}
\end{equation*}
$$

$$
V_{1}=\frac{y_{n}}{\Delta y} I_{1}+\frac{-y_{12}}{\Delta y} I_{2} \ldots \text { (3) }
$$

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \text { ilarly } \\
& V_{2}=\frac{\Delta_{2}}{\Delta}=\frac{\left|\begin{array}{ll}
y_{11} & I_{1} \\
y_{21} & I_{2}
\end{array}\right|}{\left|\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right|} \\
& V_{2}=\frac{I_{2} y_{11}-I_{1} y_{21}}{y_{11} y_{22}-y_{12} y_{21}} \\
& V_{2}=-y_{21} \\
& \Delta y I_{1}+\frac{y_{11}}{\Delta y} I_{2}
\end{aligned}
$$

Matrix form of z parameters

$$
z=\left[\begin{array}{cc}
\frac{y_{22}}{\Delta y} & \frac{-y_{12}}{\Delta y} \\
\frac{-y_{21}}{\Delta y} & \frac{y_{11}}{\Delta y}
\end{array}\right]
$$

Comparing equations (3) and (4) with equations (A) and (B) we get

$$
\begin{array}{cc}
z_{11}=\frac{y_{21}}{\Delta y} & z_{12}=\frac{-y_{12}}{\Delta y} \\
z_{21}=\frac{-y_{21}}{\Delta y} & z_{22}=\frac{y_{11}}{\Delta y}
\end{array}
$$

Interrelationships Between Parameters

Z-parameters in terms of other parameters substitute \boldsymbol{V}_{2} in eq (1)

The equations for z-parameters are as follows

$$
\begin{align*}
V_{1} & =Z_{11} I_{1}+z_{12} I_{2} \ldots(A) \\
V_{2} & =Z_{21} I_{1}+Z_{22} I_{2} \ldots(B) \tag{B}
\end{align*}
$$

$$
\begin{aligned}
V_{1} & =h_{11} I_{1}+h_{12}\left(\frac{-h_{21}}{h_{22}} I_{1}+\frac{1}{h_{22}} I_{2}\right) \\
V_{1} & =\left(h_{11}-\frac{h_{12} h_{21}}{h_{22}}\right) I_{1}+\frac{h_{12}}{h_{22}} I_{2}
\end{aligned}
$$

[B] In terms of h-parameters
The equations for h-parameters are as follows

$$
V_{1}=\frac{h_{11} h_{22}-h_{12} h_{21}}{h_{22}} I_{1}+\frac{h_{12}}{h_{22}} I_{2}
$$

$$
\begin{equation*}
V_{1}=h_{11} I \quad+h_{12} V_{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
I_{2}=h_{21} I_{1}+h_{22} V_{2} \tag{2}
\end{equation*}
$$

From eq(2) we can write

$$
\begin{gather*}
h_{22} V_{2}=-h_{21} I_{1}+I_{2} \\
V_{2}=\frac{-h_{21}}{h_{22}} I_{1}+\frac{1}{h_{22}} I_{2} \tag{3}
\end{gather*}
$$

$$
z_{11}=\frac{\Delta h}{\boldsymbol{h}_{22}} \quad z_{12}=\frac{\boldsymbol{h}_{12}}{\boldsymbol{h}_{22}} \quad \text { Matrix form of } z \text { parameters }
$$

Interrelationships Between Parameters

Z-parameters in terms of other parameters

The equations for z-parameters are as follows

$$
\begin{align*}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \ldots(A) \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2} \ldots(B) \tag{B}
\end{align*}
$$

[C] In terms of Transmission(ABCD) parameters
The equations for ABCD-parameters are as follows

$$
\begin{align*}
& V_{1}=A V_{2}+B\left(-I_{2}\right) \ldots \tag{1}\\
& I_{1}=C V_{2}+D\left(-I_{2}\right) \ldots . \tag{2}
\end{align*}
$$

From eq(2) we can write

$$
\begin{align*}
C V_{2} & =I_{1}+D\left(I_{2}\right) \\
V_{2} & ={ }_{\bar{C}}{ }^{1} 1_{1}+\frac{D}{C} I_{2} . \tag{3}
\end{align*}
$$

Substitute \boldsymbol{V}_{2} in eq (1)

$$
\begin{align*}
V_{1} & =A\left(\frac{1}{C} I_{1}+\frac{\nu}{C} I_{2}\right)+B\left(-I_{2}\right) \\
V_{1} & =\frac{A}{C} I_{1}+\left(\frac{A D}{C}-B\right) I_{2} \\
V_{1} & =\frac{A}{C} I_{1}+\left(\frac{A D-B C}{C}\right) I_{2} \\
V_{1} & =\frac{A}{C} I_{1}+\left(\frac{\Delta T}{C}\right) I_{2} \ldots(4) \tag{4}
\end{align*}
$$

Comparing equations (3) and (4) with equations
(A) and (B) we get

Matrix form of z parameters

$$
\begin{array}{ll}
z_{11}=\frac{A}{C} & z_{12}=\frac{\Delta T}{C} \\
z_{21}=\frac{1}{C} & z_{22}=\frac{D}{C}
\end{array} \quad \quad \mathrm{z}=\left[\begin{array}{ll}
\frac{A}{C} & \frac{\Delta T}{C} \\
\frac{1}{C} & \frac{D}{C}
\end{array}\right]
$$

Interrelationships Between Parameters

y-parameters in terms of other parameters

The equations for y-parameters are as follows

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \ldots(A) \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2} \ldots(B)
\end{aligned}
$$

[A] In terms of z-parameters

The equations for z-parameters are as follows

$$
\begin{align*}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \tag{1}\\
& V_{2}=z_{21} I_{1}+z_{22} I_{2} \tag{2}
\end{align*}
$$

Writing Equations in Matrix Form

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

Solve equations using Cramer's rule for $\boldsymbol{I}_{\mathbf{1}}$ and $\boldsymbol{I}_{\mathbf{2}}$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ll}
\boldsymbol{Z}_{11} & \boldsymbol{Z}_{12} \\
\boldsymbol{Z}_{21} & \boldsymbol{Z}_{22}
\end{array}\right| \\
\Delta_{1} & =\left|\begin{array}{ll}
\boldsymbol{V}_{1} & \boldsymbol{Z}_{12} \\
\boldsymbol{V}_{2} & \boldsymbol{Z}_{22}
\end{array}\right|
\end{aligned}
$$

$$
I_{1}=\frac{\Delta_{1}}{\Delta}=\frac{\left|\begin{array}{ll}
V_{1} & z_{12} \\
V_{2} & z_{22}
\end{array}\right|}{\left|\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right|}
$$

$$
I_{1}=\frac{V_{1} z_{22}-V_{2} z_{12}}{z_{11} z_{22}-z_{12} z_{21}}
$$

$$
\Delta z=z_{11} z_{22}-Z_{12} Z_{21}
$$

$$
\begin{equation*}
I_{1}=\frac{z_{22}}{\Delta z} V_{1}+\frac{-z_{12}}{\Delta z} V_{2} \ldots \tag{3}
\end{equation*}
$$

$$
I_{1}=\frac{z_{2}}{\Delta z} V_{1}+\frac{-z_{12}}{\Delta z} V_{2} \ldots \text { (3) }
$$

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ilarly } \\
& I_{2}=\frac{\Delta_{2}}{\Delta}=\frac{\left|\begin{array}{ll}
z_{11} & V_{1} \\
z_{21} & V_{2}
\end{array}\right|}{\left|\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right|} \\
& I_{2}=\frac{V_{2 z_{11}-V_{1} z_{21}}^{z_{11} z_{22}-z_{12} z_{21}}}{I_{2}=\frac{-z_{21}}{\Delta z} V_{1}+{ }_{\frac{z_{11}}{\Delta z}}^{z_{2}} V_{2} . \text { (4) }}
\end{aligned}
$$

Matrix form of y parameters

$$
y=\left[\begin{array}{cc}
\frac{z_{22}}{\Delta z} & \frac{-z_{12}}{\Delta z} \\
\frac{-Z_{21}}{\Delta z} & \frac{z_{11}}{\Delta z}
\end{array}\right]
$$

Comparing equations (3) and (4) with equations (A) and (B) we get

$$
\begin{array}{ll}
y_{11}=\frac{z_{22}}{\Delta z} & y_{12}=\frac{-z_{12}}{\Delta z} \\
y_{21}=\frac{-z_{21}}{\Delta z} & y_{22}=\frac{z_{11}}{\Delta z}
\end{array}
$$

Interrelationships Between Parameters

y-parameters in terms of other parameters

Substitute $\boldsymbol{I}_{\mathbf{1}}$ in eq (2)
The equations for y-parameters are as follows

$$
I_{1}=y_{11} V_{1}+y_{12} V_{2} \ldots(A)
$$

$$
\begin{equation*}
I_{2}=y_{21} V_{1}+y_{22} V_{2} \tag{B}
\end{equation*}
$$

$$
\begin{align*}
& I_{2}=h_{21}\left(\frac{1}{h_{11}} V_{1}+\frac{-h_{12}}{h_{11}} V_{2}\right)+h_{22} V_{2} \\
& I_{2}=\frac{h_{21}}{h_{11}} V_{1}+\left(h_{22}-\frac{h_{21} h_{12}}{h_{11}}\right) V_{2} \\
& I_{2}=\frac{h_{21}}{h_{11}} V_{1}+\left(\frac{h_{22} h_{11}-h_{21} h_{12}}{h_{11}}\right) V_{2} \\
& I_{2}=\frac{h_{21}}{h_{11}} V_{1}+\left(\frac{\Delta h}{h_{11}}\right) V_{2} \tag{1}\\
& \text { Comparing equations (3) and (4) with equations }
\end{align*}
$$

[B] In terms of h-parameters
The equations for h -parameters are as follows

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$ (A) and (B) we get

From eq(1) we can write

$$
\begin{aligned}
& h_{11} I_{1}=V_{1}-h_{12} V_{2} \\
& I_{1}=\frac{1}{h_{11}} V_{1}+\frac{-h_{12}}{h_{11}} V_{2} . .(3)
\end{aligned}
$$

$$
\begin{array}{ll}
y_{11}=\frac{1}{h_{11}} & y_{12}=-h_{1} \\
y_{21} & =\frac{21}{h_{11}}
\end{array} y_{22}=\frac{\text { Matrix form of y parameters }}{h_{11}} \quad y=\left[\begin{array}{cc}
\frac{1}{h_{11}} & \frac{-h_{12}}{h_{11}} \\
h_{21} & -\frac{\Delta h}{h_{11}}
\end{array}\right]
$$

Interrelationships Between Parameters

y-parameters in terms of other parameters

The equations for y-parameters are as follows
Substitute $\boldsymbol{I}_{\mathbf{2}}$ in eq (2)

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \ldots(A) \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2} \ldots(B)
\end{aligned}
$$

[C] In terms of Transmission(ABCD) parameters
The equations for y-parameters are as follows

$$
\begin{align*}
I_{1} & =C V_{2}+D\left(\frac{1}{B} V_{1}-\frac{A}{B} V_{2}\right) \\
I_{1} & =\frac{D}{B} V_{1}+\left(C-\frac{A D}{B}\right) V_{2} \\
I_{1} & =\frac{D}{B} V_{1}+\left(\frac{B C-A D}{B}\right) V_{2} \\
I_{1} & =\frac{D}{B} V_{1}+\left(\frac{\Delta T}{B}\right) \mathbf{V}_{2} \ldots \text { (4) } \tag{1}
\end{align*}
$$

$$
\begin{align*}
& V_{1}=A V_{2}+B\left(-I_{2}\right) \\
& I_{1}=C V_{2}+D\left(-I_{2}\right) \tag{2}
\end{align*}
$$

From eq(1) we can write

$$
\begin{aligned}
& B\left(-I_{2}\right)=V_{1}-A V_{2} \\
& I_{2}=\frac{4}{B} V_{1}+\frac{A}{B} V_{2} \ldots
\end{aligned}
$$

Comparing equations (3) and (4) with equations
(A) and (B) we get

$$
y_{11}=\frac{D}{B} \quad y_{12}=\frac{-\Delta T}{B} \quad \text { Matrix form of } y \text { parameters }
$$

Interrelationships Between Parameters

1. h-parameters in terms of other parameters (Assignment)
2. Transmission parameters(ABCD) in terms of other parameters (Assignment)

Interrelationships between all the parameters

	[Z]	[Y]	[h]	[T]
[Z]	$\left[\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right]$	$\left[\begin{array}{cc}\frac{y_{22}}{\Delta y} & \frac{-y_{12}}{\Delta y} \\ \frac{-y_{21}}{\Delta y} & \frac{y_{11}}{\Delta y}\end{array}\right]$	$\left[\begin{array}{cc}\frac{\Delta h}{h_{22}} & \frac{h_{12}}{h_{22}} \\ \frac{-h_{21}}{h_{22}} & \frac{1}{h_{22}}\end{array}\right]$	$\begin{array}{cc}A & \Delta T \\ \bar{C} & \frac{C}{C} \\ \frac{1}{C} & \frac{D}{C}\end{array}$
[Y]	$\left[\begin{array}{cc}\frac{z_{22}}{\Delta z} & \frac{-z_{12}}{\Delta z} \\ \frac{-z_{21}}{} & \frac{z_{11}}{\Delta z}\end{array}\right]$	$\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]$	$\begin{array}{cc} \frac{1}{h_{11}} & \frac{-h_{12}}{h_{11}} \\ \frac{h_{21}}{h_{11}} & \frac{\Delta h}{h_{11}} \end{array}$	$\begin{array}{cc}D & \frac{-\Delta T}{B} \\ \frac{B}{B} \\ \frac{-1}{B} & \frac{A}{B}\end{array}$
[h]	$\left[\begin{array}{cc}\frac{\Delta z}{z_{22}} & \frac{z_{21}}{z_{22}} \\ \frac{z_{21}}{z_{22}} & \frac{1}{z_{22}}\end{array}\right]$	$\left[\begin{array}{cc}\frac{1}{y_{11}} & \frac{-y_{12}}{y_{11}} \\ \frac{y_{21}}{y_{11}} & \frac{\Delta y}{y_{11}}\end{array}\right]$	$\left[\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right]$	$\begin{array}{cc}\frac{B}{D} & \frac{\Delta T}{D} \\ \frac{-1}{D} & \frac{C}{D}\end{array}$
[T]	$\left[\begin{array}{cc}\frac{z_{11}}{} & \frac{\Delta z}{Z_{21}} \\ \frac{Z_{21}}{} \\ \frac{1}{z_{21}} & \frac{z_{22}}{z_{21}}\end{array}\right]$	$\left[\begin{array}{cc}-\frac{y_{22}}{y_{21}} & \frac{-1}{y_{21}} \\ -\frac{\Delta y}{y_{21}} & -\frac{y_{11}}{y_{21}}\end{array}\right]$	$\left[\begin{array}{rr}-\frac{\Delta h}{h_{21}} & \frac{-h_{11}}{h_{21}} \\ \frac{-h_{22}}{h_{21}} & \frac{-1}{h_{21}}\end{array}\right]$	$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$

Problem 1: Find [z] for the two port network shown in figure. From [z] parameters calculate [y] parameters.

Z-parameters are given by

To find z-parameters

1. Let $I_{2}=0 \rightarrow$ port 2 open circuited

From fig $\quad V_{1}=1 * 10^{3}\left(I_{1}+10^{-5} V_{2}\right)$.

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2}
\end{aligned}
$$

At Port 2

$$
V_{2}=-100 V_{1} \ldots(2)(\text { no drop across } 10 \mathrm{k} \Omega)
$$

Substitute for V_{2} from $\mathbb{C l}_{1}(2)$ in eq(1)

$$
\begin{aligned}
& V_{1}=1 * 10^{3}\left(\mathrm{I}_{1}+10^{-5}\left(-100 V_{1}\right)\right) \\
& V_{1}=1000 \mathrm{I}_{1}-V_{1}
\end{aligned}
$$

$$
\begin{gathered}
V_{1}=500 I_{1} . .(3) \\
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}=500 \Omega
\end{gathered}
$$

Substitute for V_{1} from eq (3) in eq(2) $^{(3)}$

$$
2 V_{1}=1000 \mathrm{I}_{1}
$$

$$
\begin{aligned}
& V_{2}=-100\left(500 I_{1}\right) \\
& V_{2}=-50000 I_{1} \quad Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{L}=0
\end{aligned}=-50 \mathrm{k} \Omega
$$

1. Let $I_{1}=0 \rightarrow$ port 1 open circuited

$$
V_{1}=z_{11} I_{1}+z_{12} I_{2}
$$

$$
V_{2}=z_{21} I_{1}+z_{22} I_{2}
$$

Apply KVL at port 2

$$
\begin{array}{r}
-10 * 10^{3} I_{2}+100 V_{1}+V_{2}=0 \\
V_{2}=10 * 10^{3} I_{2}-100 V_{1} . .(5)
\end{array}
$$

Substitute for V_{1} from eq (4) in eq (5)

$$
\begin{aligned}
& V_{2}=10 * 10^{3} I_{2}-100\left(0.01 V_{2}\right) \\
& V_{2}=10 * 10^{3} I_{2}+V_{2}
\end{aligned}
$$

At Port 1

$$
\begin{equation*}
\left.V_{1}=\left(1 * 10^{3}\right)\left(10^{-5} V_{2}\right)\right)=0.01 V_{2} \ldots(4 \tag{4}
\end{equation*}
$$

Substitute for V_{2} from eq (6) in eq (4)

$$
V_{1}=0.01\left(5000 I_{2}\right)
$$

$$
\begin{gathered}
V_{1}=50 I_{2} \\
z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} 50 \Omega
\end{gathered}
$$

$$
\mathrm{z}=\left[\begin{array}{cc}
500 & 50 \\
-50000 & 5000
\end{array}\right]
$$

y-parameters from z-parameters

$$
2 V_{2}=10 * 10^{3} I_{2}
$$

$$
\begin{equation*}
V_{2}=5000 I_{2} \tag{6}
\end{equation*}
$$

$$
y=\left[\begin{array}{cc}
\frac{z_{22}}{\Delta z} & \frac{-z_{12}}{\Delta z} \\
\frac{-z_{21}}{\Delta z} & \frac{z_{11}}{\Delta z}
\end{array}\right]
$$

$$
\begin{aligned}
& \Delta z=500 * 5000-50 *(-50000) \\
& y=\left[\begin{array}{cc}
1 * \mathbf{1 0}^{-3} & 1 * 10^{-5} \\
-10 * \mathbf{1 0}^{-3} & 1 * \mathbf{1 0}^{-4}
\end{array}\right]
\end{aligned}
$$

Problem 2: The z-parameters of a two port network are $z_{11}=20 \Omega, Z_{22}=30 \Omega, z_{12}=z_{21}=10 \Omega$. Find y and $A B C D$ parameters of the network.

$$
y=\left[\begin{array}{cc}
\frac{z_{22}}{\Delta z} & \frac{-z_{12}}{\Delta z} \\
\frac{-z_{21}}{\Delta z} & \frac{z_{11}}{\Delta z}
\end{array}\right]
$$

$$
[T]=\left[\begin{array}{ll}
\frac{z_{11}}{z_{21}} & \frac{\Delta z}{z_{21}} \\
\frac{1}{z_{21}} & \frac{z_{22}}{z_{21}}
\end{array}\right]
$$

y-parameters

$$
\begin{aligned}
& y_{11}=\frac{3}{50} u \\
& y_{12}=\frac{-1}{50} u \\
& y_{21}=\frac{-1}{50} u \\
& y_{22}=\frac{2}{50} u
\end{aligned}
$$

ABCD parameters

$$
\begin{gathered}
A=2 \\
B=50 \Omega \\
\mathrm{C}=0.1 \mathrm{u} \\
\mathrm{D}=3
\end{gathered}
$$

Problem 3: Find the y-parameters for the circuit shown in figure. Then use the parameter relation ship to find the ABCD parameters. (assignment)

Solution

$$
\begin{gathered}
\mathrm{y}=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]=\left[\begin{array}{cc}
0.5 * 10^{-3} & -0.25 * 10^{-3} \\
-0.25 * 10^{-3} & 0.4 * 10^{-3}
\end{array}\right] \\
\mathrm{T}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
2 & 4000 \\
-0.75 * 10^{-3} & 2
\end{array}\right]
\end{gathered}
$$

Problem 4: Following are the hybrid parameters for a network.
$h=\left[\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right]=\left[\begin{array}{ll}5 & 2 \\ 3 & 6\end{array}\right]$
Determine the y-parameters of the network. (assignment)
Solution

$$
y=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{5} & -\frac{2}{5} \\
\frac{3}{5} & \frac{24}{5}
\end{array}\right]
$$

MODULE-5
 RESONANCE CIRCUITS

Contents

Series Resonance:

> Variation of current and voltage with frequency, selectivity and Bandwidth

- Q-factor, Circuit magnification factor
> Selectivity with variable capacitance, selectivity with variable inductance.

Parallel Resonance:

> Selectivity and Bandwidth
> Maximum impedance conditions with C, L \& f variable
> Current in anti-resonant circuit
> The general case resistance present in both branches.

Introduction

Resonance

Resonance is defined as a phenomenon in which applied voltage and resulting current are in phase.

In AC circuits, under resonance condition, the reactance get cancelled, if the inductive and capacitive reactances are in series or the susceptance get cancelled if the inductive and capacitive reactances are in parallel.

Complex impedance of AC circuit has only real resistance part.

The resonance condition in AC circuits may be achieved by varying the frequency of the supply, keeping the network elements constant or by varying L or C, keeping the frequency constant.

Types of Resonance

The resonance may be classified into two groups,

1. Series resonance
2. Parallel resonance

Series Resonance

Series Resonance

The impedance of the circuit is given by

$$
\begin{aligned}
& Z=R+j\left(X_{L^{-}} X_{C}\right) \\
& Z=R+j\left(\omega L-\frac{1}{\omega C}\right)
\end{aligned}
$$

According to the definition of resonance, reactive part of impedance of series RLC circuit is zero.

Let the frequency of resonance is denoted by ω_{0}.

$$
\begin{aligned}
& \omega_{0} L=\frac{1}{\omega_{0} C}=0 \\
& \omega_{0} L=\frac{1}{\omega_{0} C} \\
& \omega_{0}^{2}=\frac{1}{L_{C} C} \\
& \omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

W.K.T, $\omega_{0}=2 \pi f_{0}$

$$
2 \pi f_{0}=\frac{1}{\sqrt{L C}}
$$

$$
f_{0}=\frac{1}{2 \pi \sqrt{C C}}
$$

Phasor Diagram

Reactance Curve

The impedance of the entire circuit

$$
\begin{aligned}
& Z=R+j\left(w L-\frac{1}{w \boldsymbol{c}}\right) \\
& I Z I=\sqrt{R^{2}+\left(w L-\frac{1}{w C}\right)^{2}}
\end{aligned}
$$

Variation of current and voltage with frequency

The impedance of the circuit is
$Z=R+j\left(w L-\frac{1}{w C}\right)$
And the current is
$I=\frac{}{R+j(w L-w c)}$
which at resonance becomes $I_{0}=V / R$
Hence the current is maximum at resonance.

The voltage across capacitor \mathbf{C} is
$\mathrm{V}_{\mathrm{c}}=\frac{I}{j w C}=\underset{\mathrm{j}}{1} \mathrm{C} \in\left[\frac{V}{\mathrm{R}+\mathrm{j}(w L-\underset{w}{ })}\right]$
Hence, magnitude $\left|\mathrm{V}_{\mathrm{c}}\right|=\frac{V}{W C \sqrt{\mathrm{R}^{2}+\left(\mathrm{WL}-\frac{1}{W C}\right)^{2}}}$

The frequency fc at which $V c$ is maximum may be obtained by equating $\frac{d V c^{2}}{d w}=0$. This results in $\mathrm{fc}=\left(\frac{1}{2 M}\right) \sqrt{\frac{1}{L C}-\frac{\mathrm{R}^{2}}{2 \mathrm{~L}^{2}}}$
The voltage across inductor L is

$$
V_{L}=\frac{V(j w L)}{R+\mathrm{j}(w L-\bar{w})}
$$

The magnitude I V I = $\frac{V w L}{\sqrt{R^{2}+\left(w L-\frac{1}{w C}\right)^{2}}}$
The frequency
f_{L} at which V_{L} is maximum may be obtained by equating $\frac{\mathrm{d} V L^{2}}{d w}$ to zero.
Thus, $f_{L}=\frac{1}{2 \pi \sqrt{L C-\frac{C^{2} R^{2}}{2}}}$ obviously, $\boldsymbol{f}_{L}>\boldsymbol{f}_{C}$
The voltage V_{L} and Vc are equal in magnitude and opposite phase at resonance.

Bandwidth

Bandwidth of series RLC circuit is defined as the band of frequencies over which the power in the circuit is half of its maximum value.

At resonant frequency, maximum current I_{0} is

$$
I_{0}=\frac{V}{R}
$$

The current is maximum, as impedance is minimum at resonance.

$$
P_{0}=I_{0}{ }^{2} \mathrm{R}=P_{\max }
$$

So, at the frequencies, where, power in the circuit is of its maximum value. Current becomes $\left(\frac{1}{\sqrt{2}}\right)$ times of its maximum value.
"The frequencies at which power in the circuit is half of its maximum value is called half power frequencies."

At resonant frequency, power is given by,

$$
P_{0}=P_{\max }=I_{0}{ }^{2} \mathrm{R}
$$

At \boldsymbol{f}_{1}, power in the circuit is half.

$$
P \mid==_{2} I_{0}^{2} R
$$

At f_{2}, power in the circuit is half.

$$
P \mid={ }_{2}^{2} I{ }_{0}^{2} R
$$

According to definition,

$$
\text { B.W }=\left(f_{2}-f_{2}\right) \mathrm{Hz}
$$

Current in series RLC circuit is given by,

$$
\begin{equation*}
\mathrm{I}=\frac{V}{|Z|}=\frac{V}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{WL}-\frac{1}{w C}\right)^{2}}} \tag{1}
\end{equation*}
$$

At half power point,

$$
\begin{equation*}
\mathrm{I}=\frac{I_{0}}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}} \frac{V}{R} \tag{2}
\end{equation*}
$$

Current in series RLC circuit is given by,

$$
\mathrm{I}=\frac{V}{|Z|}=\frac{V}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{WL}-\frac{1}{w C}\right)^{2}}} \text {-----------(1) }
$$

At half power point,

$$
\begin{equation*}
I=\frac{I_{0}}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}} \frac{V}{R} \tag{2}
\end{equation*}
$$

Equate (1) and (2)

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \frac{V}{R}=\frac{V}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{wL}-\frac{1}{w C}\right)^{2}}} \\
& \sqrt{\mathrm{R}^{2}+\left(\mathrm{wL}-\frac{1}{w C}\right)^{2}}=\sqrt{2} R
\end{aligned}
$$

Squaring on both side,

$$
\begin{aligned}
& \mathrm{R}^{2}+\left(\mathrm{wL}-\frac{1}{w C}\right)^{2}=2 \mathrm{R}^{2} \\
& \left(\mathrm{wL}-\frac{1}{w C}\right)^{2}=\mathrm{R}^{2}
\end{aligned}
$$

$$
\pm \mathrm{R}=\mathrm{wL}-\frac{1}{w C} \quad \begin{aligned}
& \text { At half power frequencies } f_{1}, f_{2} \text {, the reactive part of } \\
& \text { impedance is equal to resistive part of impedance of RLC } \\
& \text { circuit. }
\end{aligned}
$$

$$
\pm R=\omega L-\frac{1}{\omega C}
$$

We can write,

$$
\begin{align*}
& \omega_{2} L-\frac{1}{\omega_{1} C}=+R \text {----------------- }(a) \\
& \omega_{1} L-\frac{1}{\omega_{1} C}=-R \tag{b}
\end{align*}
$$

(a) $+(\mathrm{b}) \rightarrow$

$$
\begin{aligned}
& \left(\omega_{1}+\omega_{2}\right) L-\left(\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}}\right)^{1}=0 \\
& \left(\omega_{1}+\omega_{2}\right) L-\left(\frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}}\right) \frac{1}{C}=0 \\
& \left(\omega_{1}+\omega_{2}\right) L=\left(\frac{1}{\omega_{1}+\omega_{2}}\right)- \\
& L=\left(\frac{1}{\omega_{1} \omega_{2}}\right) \frac{1}{C} \\
& \omega_{1} \omega_{2}=\frac{1}{L C}
\end{aligned}
$$

But from the condition of resonance, $\omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \omega_{1} \omega_{2}=\omega_{0}^{2} \\
& f_{1} f_{2}=f_{0}^{2}
\end{aligned}
$$

$$
\omega_{2} L-\omega_{1} L \frac{1}{\omega_{1} C}=+R-\cdots-\cdots-\cdots(a)
$$

(a) - (b) $\rightarrow \quad \frac{}{\omega_{1} C}=-R$--------------- (b)
$\left(\omega_{2}-\omega_{1}\right) L+\left(\frac{1}{\omega_{1}^{1}}-\frac{1}{\omega_{2}}-\omega_{1}\right)_{1}^{1}$
$(\omega-$
$\left(\omega-\omega_{1}\right) L+\left(\frac{\omega_{2}-\omega_{1} 1}{\omega_{2}}\right) \equiv 2 R$
$\left(\omega-\omega_{1}\right)+\left(\frac{\left.\omega_{2} \omega_{1} \omega_{1}\right) 1}{\omega_{1} \omega_{2}}=\frac{2 R}{}\right.$
$\left(\omega_{2}-\omega\right)+\left(\omega_{1}-\omega_{1}-\frac{L C}{L C}=\frac{2 L R}{L}\right.$
$2\left(\omega_{2}-\omega_{1}\right)=\frac{2 R}{L}$
$2 \pi\left(f_{2}-f_{1}\right)=\frac{R}{L}$
B. $w=\left(f_{2}-f_{1}\right)=\frac{R}{2 \pi L}$

Selectivity

"Selectivity of a resonant circuit is defined as ability of a circuit to distinguish between desired \& undesired frequency."

It is also the ratio of resonant frequency to the Bandwidth of a resonant circuit.

$$
\begin{aligned}
& \text { Selectivity }=\frac{\text { Resonant } \text { frequency }}{\text { Bandwidth }}=\frac{f_{0}}{f_{2}-f_{1}} \\
& \begin{aligned}
\text { Bandwidth } & =f_{2}-f_{1}=\frac{R}{2 \pi L} \\
\text { Selectivity }= & \frac{f_{0}}{\frac{R}{2 \pi L}}=\frac{2 \pi f_{0} L}{R} \\
& =\frac{\omega_{0} L}{R}=Q_{0}
\end{aligned}
\end{aligned}
$$

Selectivity of resonant circuit is directly proportional to the Q-factor of the circuit at resonant frequency.

Q-factor

"Quality factor of a resonance circuit is a measure of quality of a resonant circuit."
Q is a ratio of power stored to the power dissipated in the circuit reactance \& resistance respectively.

$$
Q=2 \pi \times \frac{\text { Max energy stored by cycle }}{\text { Energy dissipated per cycle }}
$$

Lets derive an expression for the Q-factor of inductor \& Capacitor.

Consider a voltage \mathbf{V} is applied to an inductor with leakage resistance \mathbf{R} in series.
R The maximum energy stored per cycle is given by

$$
\omega_{L}=\frac{1}{2} \mathrm{~L} I_{m}^{2} \quad \text { where } I_{m} \rightarrow \text { Max current }
$$

The averagse pbwez dissipated in inductor

$$
\left(\frac{-}{\sqrt{2}}\right) \mathrm{R} \rightarrow \frac{1}{2} I_{m}^{2} \mathrm{R}
$$

$$
\text { Energy dissipated per cycle }=\bar{f}=\frac{2}{f}
$$

$$
\mathrm{Q}=2 \pi \mathrm{x}^{\frac{1}{2} \mathrm{~L} I_{m}^{2}} \frac{\frac{1}{2} I_{m}{ }^{2} \mathrm{R}}{} \rightarrow \frac{(2 \pi f) L}{R}
$$

$$
\mathrm{Q}=\frac{\omega L}{R}
$$

"Expression for Q-factor of an Capacitor"

Consider a voltage \mathbf{V} is applied to a capacitor with leakage resistance \mathbf{R} in series.

The maximum energy stored per cycle is given by

$$
\begin{aligned}
& \omega_{C}=\frac{1}{2} C V_{m}^{2} \\
& \omega_{C}=\frac{1}{z} C\left(\frac{d_{m}}{\omega C}\right)^{2} \\
& \omega_{C}=\frac{1}{2} \frac{I_{m}^{2}}{\omega^{2} C}
\end{aligned}
$$

where $V_{m} \rightarrow$ Peak voltage

The averagse pbivez dissipated in inductor

$$
\left(\frac{-}{\sqrt{2}}\right) \mathrm{R} \rightarrow \frac{1}{2} I_{m}^{2}{\underset{P}{\mathrm{R}}{ }^{1} I_{m}^{2} \mathrm{R}}^{2}
$$

Energy dissipated per cycle $=\bar{f}=\frac{2}{f}$ $\mathbf{Q}=2 \pi \times \frac{\frac{1}{\frac{1}{I_{m}}{ }^{2}}{ }^{2} C}{\frac{1}{2} I_{m}{ }^{2} R} \quad \rightarrow \frac{(2 \pi f)}{\omega^{2} C R}$
$Q=\frac{1}{\omega R C}$
$f \rightarrow$ freq. of operation

Let $\boldsymbol{Q}_{\mathbf{0}}=\frac{m_{0} L}{R}$
We know that, $m_{0}=\frac{1}{\sqrt{L C}}$

$$
\begin{aligned}
& Q_{0}=\frac{\frac{1}{\sqrt{L C}}}{R} \\
& Q_{0}=\sqrt{\frac{L}{C}} \frac{1}{R}
\end{aligned}
$$

Expression for \boldsymbol{f}_{1} and \boldsymbol{f}_{2}

f_{1} and f_{2} are equidistant from $f_{0} s$ shown in the figure.
At f_{1} and f_{2}, the current is $\frac{I_{m}}{\sqrt{2}}$ and hence, the impedance is $\sqrt{2}$ times the value of impedance.

At $f_{0}, \mathrm{Z}=\mathrm{R}$
At f_{1} and $f_{2}, Z=\sqrt{2} R$

In general, the impedance of circuit is given by,

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

At f_{1} and $f_{2}, \sqrt{2} \mathrm{R}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

$$
\begin{align*}
& 2 R^{2}=R^{2}+\left(-X_{C}\right)^{2} \\
& R^{2}=\left(X_{L}-X_{C}\right)^{2} \\
& R=X_{L}-X_{C}------- \tag{*}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{R}=X_{L}-X_{C} \tag{*}
\end{equation*}
$$

At $f_{1}, X_{C}>X_{L}$

$$
\mathrm{R}=X_{\mathbf{1}} C-X_{L}
$$

Hence, eqn (*) can be written as

$$
R=\frac{1}{\omega_{1} C}-\omega_{1} L
$$

$$
R=\frac{1-\omega\left(\omega_{1} L\right)}{\omega_{1} C}
$$

$$
\mathrm{R}=\frac{1-\omega_{1}{ }^{2} C L}{\omega_{1} C}
$$

$$
\omega_{1} C R=1-\omega_{1}^{2} C L
$$

$$
\omega_{1} C R+\omega_{1}^{2} C L-1=0
$$

$$
\begin{aligned}
& \omega_{1}=-\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}} \\
& f_{1}=\frac{1}{2 \pi}\left[-\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}}\right]
\end{aligned}
$$

[Divide by LC]

$$
\omega_{1}^{2}+\frac{\omega R}{L}-\frac{1}{L C}=0
$$

\{Quadratic equation\} $a=1, b=R / L, c=-1 / L C$

$$
\begin{equation*}
\mathrm{R}=X_{L}-X_{C} \tag{*}
\end{equation*}
$$

At $\boldsymbol{f}_{2}, \boldsymbol{X}_{L}>\boldsymbol{X}_{\boldsymbol{C}}$
Hence, eqn (*) can be written as

$$
\begin{aligned}
& \mathrm{R}=X_{L}-X_{C} \\
& \mathrm{R}=\omega_{2} L-\frac{1}{\omega_{2} C} \\
& \mathrm{R}=\frac{\omega_{2} L\left(\omega_{2} C\right)-1}{\omega_{1} C} \\
& \mathrm{R}=\frac{\omega_{2}^{2} C L-1}{\omega_{2} C}
\end{aligned}
$$

$$
\omega_{2} C R=\omega_{2}^{2} C L-1
$$

$$
\omega_{2}^{2} C L-\omega_{2} C R-1=0
$$

$$
\omega_{2}^{2}-\frac{\omega_{2} R}{L}-\frac{1}{L C}=0
$$

[Divide by LC]

\{Quadratic equation\} $a=1, b=-R / L, c=-1 / L C$

$$
\begin{align*}
& \omega_{2}=\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}} \\
& f_{2}=\frac{1}{2 \pi}\left[\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}}\right] \tag{2}
\end{align*}
$$

$f_{1}=\frac{1}{2 \pi}\left[-\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}}\right]$
$f_{2}=\frac{1}{2 \pi}\left[\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}}\right]$
Bandwidth is given by $f_{2}-f_{1}=\frac{R}{2 \pi L} \quad$ (or) $\quad \omega_{2}-\omega_{1}=\frac{R}{L}$
But at resonance, $q_{0}=\frac{\omega_{0} L}{R}$

$$
Q_{0}=\frac{2 \pi f_{0}}{(R / L)}
$$

From eqn (3), $\boldsymbol{Q}_{\mathbf{0}}=\frac{2 \pi f_{0}}{2 \pi\left(f_{2}-f_{1}\right)}$

$$
Q_{0}=\frac{f_{0}}{B . W}
$$

Parallel Resonance

A parallel circuit is said to be in resonance when applied voltage and resulting current are in phase that gives unity power factor condition.

Consider a parallel resonant circuit with applied voltage and total resulting current I.

The admittance of branch containing L and R_{L} is

$$
\begin{gathered}
Y_{L}=\frac{1}{\mathrm{R}+j X_{L}} \times \frac{R-j X_{L}}{R-j X_{L}} \\
=\frac{R-j X_{L}}{R^{2}+{X^{2}}_{L}} \\
Y_{L}=\frac{R-j w L}{R^{2}+w^{2} L^{2}}
\end{gathered}
$$

The admittance of branch containing C is given by,
$Y_{C}=\frac{1}{-j X_{c}}=\mathrm{j} \frac{1}{X_{c}}=j \cdot \frac{1}{1 / w c}=j w c$
Total admittance of parallel circuit is

$$
\boldsymbol{Y}=Y_{L}+Y_{C}
$$

$$
\begin{gather*}
Y=\frac{R-j w L}{R^{2}+w^{2} L^{2}}+j w c \\
Y=\frac{R}{R^{2}+w^{2} L^{2}}+j\left[w c-\frac{w L}{R^{2}+w^{2} L^{2}}\right] \tag{1}
\end{gather*}
$$

At resonance , imaginary part i.e susceptance becomes zero. Let the resonant frequency of parallel resonant circuit is denoted by $w_{a r}$, Thus at $\boldsymbol{w}=\boldsymbol{w}_{\text {ar }}$,

$$
\begin{aligned}
& R^{2}+w^{2} L^{2}=\frac{L^{L}}{C} \\
& w^{2} L^{2}=\frac{q^{r}}{\bar{C}}-R^{2} \\
& a r \\
& w_{a r}^{2}=\frac{1}{L C}-\frac{R^{2}}{L^{2}} \\
& w_{a r}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}
\end{aligned}
$$

$$
\begin{gathered}
w_{a r} C-\frac{w_{a r} L}{R^{2}+w_{a r}{ }^{2} L^{2}}=0 \\
w_{a r} C=\frac{w_{a r} L}{R^{2}+w_{a r}^{2} L^{2}}
\end{gathered}
$$

where $w_{a r}$ is the anti-resonant frequency

$$
\begin{gathered}
2 \pi f_{a r}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}} \\
f_{a r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}} \sqrt{1-\frac{C R^{2}}{L^{2}}}
\end{gathered}
$$

Where $f_{a r}$ is the series anti-resonance frequency.
For series resonance,

$$
\omega_{0}=\frac{1}{\sqrt{L C}}=2 \pi f_{0}
$$

Where f_{0} is the series resonant frequency

$$
\begin{aligned}
& Q_{0}^{2}=\frac{w_{0} L}{R} \times \frac{1}{W_{0} C R}=\frac{L}{C R^{2}} \\
& f_{a r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}} \sqrt{1-\frac{1}{Q_{0}^{2}}}
\end{aligned}
$$

The impedance of the circuit can be obtained by putting susceptance part equal to zero in the expression of total admittance Y.

$$
\begin{aligned}
& Y=\frac{1}{Z}= \frac{R_{L}}{R^{2}+w^{2} L^{2}} \\
& Z=\frac{R^{2}+w^{2} L^{2}}{R}
\end{aligned}
$$

From equation (2),

Hence the impedance at antiresonance is

$$
Z_{a r}=\frac{L}{C R}=R_{a r}
$$

From Equation 2

$$
\begin{aligned}
& R^{2}+w^{2} L^{2}=\frac{L}{C} \\
& R^{2}\left[1+{ }_{\left.R^{2}\right]}^{W^{2} L^{2}}=\frac{C}{L}\right. \\
& R^{2}\left[1+Q_{0}^{2}\right]= \\
& R\left[1+Q_{0}^{2}\right]=\frac{L}{C R} \\
& Z_{a r}=R_{a r}=\frac{L}{C R}=R\left[1+Q_{0}^{2}\right]
\end{aligned}
$$

Impedance of Antiresonant Circuit Near Antiresonant

The impedance of parallel resonant circuit at any frequency is given by,

$$
\begin{aligned}
Z & =\left(R_{L}+j \omega L\right) \|\left(\frac{1}{j \omega C}\right) \\
Z & =\frac{\left(R_{L}+j \omega L\right)\left(\frac{1}{j \omega C}\right)}{R_{L}+j \omega L+\frac{1}{j \omega C}} \\
Z & =\frac{R_{L}\left(1+j \frac{\omega L}{R_{L}}\right)\left(\frac{1}{j \omega C}\right)}{R_{L}\left[1+j \frac{\omega L}{R_{L}}+\frac{1}{j \omega R_{L} C}\right]} \\
Z & =\frac{\left(1+j \frac{\omega L}{R_{L}}\right)\left(\frac{1}{j \omega C}\right)}{1+j \frac{\omega L}{R_{L}}\left(1-\frac{1}{\omega^{2} L C}\right)}
\end{aligned}
$$

$Z=\frac{1+j \frac{\omega L}{R_{L}}\left(1-\frac{1}{\omega^{2} L C}\right)}{1}$
Above equation gives the general expression for the impedance of a parallel resonant circuit at any frequency \mathbf{w}. Let δ be the fractional deviation in the frequency defined as,

$$
\begin{align*}
\delta=\frac{f-f_{a r}}{f_{a r}} & =\frac{\omega-\omega_{\mathrm{ar}}}{\omega}=\frac{\omega}{\omega_{\mathrm{ar}}}-1 \\
\frac{\omega}{\omega_{\mathrm{ar}}} & =(1+\delta)^{1 . ~} \tag{2}
\end{align*}
$$

We can write,

$$
\begin{equation*}
\text { Also, } \frac{\omega_{a r}}{\omega}=\frac{1}{(1+\delta)} \cdots . \tag{3}
\end{equation*}
$$

Consider the expression

$$
\frac{1}{\omega^{2} L C=}=\frac{\omega_{\mathrm{ar}}^{2}}{\omega^{2}} \cdot \frac{1}{\omega_{\mathrm{ar}}^{2} \mathrm{LC}}
$$

But for high $Q_{0}, w_{a r}=\frac{1}{\sqrt{L C}} \quad \begin{array}{r}\text { therefore } w_{a r}^{2}\end{array}=\frac{1}{L C} \quad$ i.e $w_{a r}^{2} L C=1$

$$
\begin{equation*}
\frac{1}{\omega^{2} \mathrm{LC}}=\frac{\omega_{\mathrm{ar}}^{2}}{\omega^{2}} \cdot 1=\frac{\omega_{\mathrm{ar}}^{2}}{\omega^{2}}=\frac{1}{(1+\delta)^{2}} \tag{5}
\end{equation*}
$$

Rearranging numerator term in Eq 1, we can write,

$$
\begin{aligned}
& Z=\frac{\frac{L}{C R_{L}}\left(1+\frac{R_{L}}{j \omega L}\right)}{1+j \frac{\omega_{L}}{R_{L}}\left(1-\frac{1}{\omega^{2} L C}\right)} \\
& Z=\frac{\frac{L}{C R_{L}}\left(1-j \frac{R_{L}}{\omega L}\right)}{1+j \frac{\omega_{L}}{R_{L}}\left(1-\frac{1}{\omega^{2} L C}\right)}
\end{aligned}
$$

Putting values from equations $2,3,4$ and 5 we get

$$
Z=\frac{\frac{L}{C R_{L}}\left(1-j \frac{R_{L}}{\omega L}\right)}{1+j \frac{\omega_{L}}{R_{L}}\left(1-\frac{1}{\omega^{2} L C}\right)}
$$

$$
\begin{aligned}
& Z=\frac{L}{\mathrm{CR}_{\mathrm{L}}} \cdot \frac{1-j \frac{1}{\mathrm{Q}_{0}(1+\delta)}}{1+\mathrm{jQ}_{0}(1+\delta)\left[1-\frac{1}{(1+\delta)^{2}}\right]} \\
& \mathrm{Z}=\frac{\mathrm{L}}{\mathrm{CR}_{\mathrm{L}}} \cdot \frac{1-\mathrm{j} \frac{1}{\mathrm{Q}_{0}(1+\delta)}}{1+\mathrm{jQ}_{0}(1+\delta)\left[\frac{(1+\delta)^{2}-1}{(1+\delta)^{2}}\right]} \\
& Z=\frac{L}{\mathrm{CR}_{\mathrm{L}}} \cdot \frac{1-\mathrm{j} \frac{1}{\mathrm{Q}_{0}(1+\delta)}}{1+\mathrm{jQ} \mathrm{Q}_{0}\left[\frac{1+2 \delta+\delta^{2}-1}{(1+\delta)}\right]} \\
& Z=\frac{L}{C R_{L}} \cdot \frac{1-j \frac{1}{Q_{0}(1+\delta)}}{1+j Q_{0} \cdot \delta\left[\frac{2+\delta}{1+\delta}\right]}
\end{aligned}
$$

At resonance,

$$
\begin{gathered}
\boldsymbol{w}=\boldsymbol{w}_{a r} \\
\delta=\frac{\omega-\omega_{a r}}{\delta_{\text {ar }}}=0
\end{gathered}
$$

Then equation 6 reduces to,

$$
\mathrm{Z}=\frac{\mathrm{L}}{\mathrm{CR}_{\mathrm{L}}} \cdot\left[1-\mathrm{j} \frac{1}{\mathrm{Q}_{0}}\right]
$$

But generally $Q_{0} \gg 10$, then $\frac{1}{Q_{0}}$ is very small compared with unity term and hence usually neglected. Hence the impedance at antiresonance is given by

$$
\begin{equation*}
Z=Z_{\mathrm{ar}}=\frac{\mathrm{L}}{\mathrm{C} \mathrm{R}_{\mathrm{L}}} \tag{7}
\end{equation*}
$$

If $\boldsymbol{w} \neq w_{\text {ar }}$ and $\delta \ll 1$, then neglecting δ term as compared with unity term, then equation 6 reduces to

$$
Z=\frac{L}{\mathrm{CR}_{\mathrm{L}}} \cdot \frac{1-\mathrm{j} \frac{1}{\mathrm{Q}_{0}}}{1+\mathrm{j} 2 \delta \mathrm{Q}_{0}}
$$

With same justification as discussed earlier, $\frac{1}{Q_{0}} \ll 1$, hence neglected, Therefore

$$
Z=\frac{\frac{L}{\mathrm{CR}_{\mathrm{L}}} \cdot 1}{1+\mathrm{j} 2 \delta \mathrm{Q}_{0}}
$$

From equation 7,

$$
\frac{L}{\mathrm{CR}_{\mathrm{L}}^{\text {with }}}=\mathrm{Z}_{\mathrm{ar}}=\mathrm{R}_{\mathrm{L}}\left(1+\mathrm{Q}_{0}^{2}\right) \approx \mathrm{R}_{\mathrm{L}} \cdot \mathrm{Q}_{0}^{2}
$$

Hence the impedance near resonance is given by

$$
z=\frac{Z_{a r}}{1+j 2 \delta Q_{0}}=\frac{R_{L} \cdot Q_{0}{ }^{2}}{1+j 2 \delta Q_{0}}
$$

Bandwidth and Selectivity of Antiresonant circuit

The half power frequency points $f 1$ and $f 2$ for parallel resonant circuit are obtained when impedance of the parallel resonant circuit Z becomes equal to (0.707) times value of maximum impedance at resonance $Z_{a r}$.
The impedance of parallel resonant circuit is given by

$$
Z=\frac{R_{L} Q_{0}^{2}}{1+j 2 \delta Q_{0}}
$$

The impedance at antiresonance with high \mathbf{Q} factor circuit is given by,

$$
Z_{a r}=R_{L} Q_{0}^{2}
$$

The condition for half power frequencies is given by,

$$
\begin{gathered}
\left|\frac{Z_{a r}}{Z}\right|=\sqrt{2} \\
\left|1+j 2 \delta Q_{0}\right|=|1 \pm j 1|
\end{gathered}
$$

Comparing imaginary terms,

$$
\begin{aligned}
& 2 \delta \boldsymbol{Q}_{\mathbf{0}}=\frac{-4}{} \delta \\
& = \pm \quad \frac{1}{2 Q_{0}}
\end{aligned}
$$

But δ is the fractional deviation and it is given by

$$
\delta=\frac{f-f_{a r}}{f_{a r}}= \pm \frac{1}{2 Q_{0}}
$$

When frequency

$$
f>f_{a r}, \quad \delta=+\frac{1}{2 Q_{0}}
$$

And

$$
\mathrm{f}<\mathrm{f}_{\mathrm{ar}}, \quad \delta=-\frac{1}{2 \mathrm{Q}_{\mathrm{o}}}
$$

Hence upper half power frequency is given by,

$$
f_{2}-f_{a r}=+\frac{f_{a r}}{2 Q_{0}}
$$

Similarly lower half power frequency is given by,

$$
\mathrm{f}_{1}-\mathrm{f}_{\mathrm{ar}}=-\frac{\mathrm{f}_{\mathrm{ar}}}{2 \mathrm{Q}_{0}}
$$

Therefore

$$
\text { Bandwidth }=f_{2}-f_{1}=\frac{f_{a r}}{Q_{0}}
$$

As we have studied in series resonance , the selectivity is given by,

$$
\text { Selectivity }=\frac{\text { Resonant frequency }}{\text { Bandwidth }}=\frac{\mathrm{f}_{\mathrm{ar}}}{\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)}
$$

Selectivity $=\frac{f_{a r}}{\left(f_{2}-f_{1}\right)}=Q_{0}$

Maximum Impedance Condition with C, L f Variables

The impedance of a parallel resonant circuit is

$$
Z=\frac{\left(R+j X_{L}\right)\left(-j X_{C}\right)}{R+j\left(X_{L}-X_{C}\right)}
$$

Where

$$
\begin{gathered}
X_{L}=\omega L, X_{C}=1 / \omega C \\
|Z|^{2}=\frac{\left(R^{2}+X_{L}^{2}\right) X_{C}^{2}}{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
\end{gathered}
$$

In order for $|z|^{2}$ to be maximum by varying X_{c}

$$
\frac{d}{d X_{C}}|Z|^{2}=0
$$

$$
\begin{aligned}
& \frac{\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right] 2 X_{C}\left(R^{2}+X_{L}{ }^{2}\right)-\left(R^{2}+X_{L}^{2}\right) X_{C}{ }^{2} 2\left(X_{L}-X_{C}\right)(-1)}{\left\{R^{2}+\left(X_{L}-X_{C}\right)^{2}\right\}}=0 \\
& {\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right] 2 X_{C}\left(R^{2}+X_{L}{ }^{2}\right)+\left(R^{2}+X_{L}{ }^{2}\right) X_{C}\left(X_{L}-X_{C}\right)=0} \\
& 2 X_{C}\left(R^{2}+X_{L}^{2}\right)\left\{R^{2}+\left(X_{L}-X_{C}\right)^{2}+X_{C}\left(X_{L}-X_{C}\right)\right\}=0 \\
& 2 X_{C}\left(R^{2}+X_{L}{ }^{2}\right)\left\{R^{2}+X_{L}{ }^{2}+X_{C}{ }^{2}-2 X_{L}+X_{L} X_{C}-X_{C}{ }^{2}\right\}=0 \\
& 2 X_{C}\left(R^{2}+X_{L}^{2}\right)\left\{R^{2}+X_{L}{ }^{2}-X_{L} X_{C}\right\}=0 \\
& \left\{R^{2}+X_{L}{ }^{2}-X_{L} X_{C}\right\}=0 \\
& X_{C}=\frac{R^{2}+X_{L}^{2}}{X_{L}}=X_{L}\left[1+\left(\frac{R}{X_{L}}\right)^{2}\right]=X_{L}\left[1+\frac{1}{Q_{0}^{2}}\right]
\end{aligned}
$$

This gives the value of the reactance X_{C} for maximum impedance.

Again $\quad R^{2}+X_{L}^{2}-X_{C} X_{L}=0$

$$
\begin{aligned}
& R^{2}+(w L)-\frac{1}{w \boldsymbol{c}} \mathrm{wL}=0 \\
& R^{2}+\boldsymbol{w}^{2} \mathrm{~L}^{2}-\frac{}{w \boldsymbol{w C}} \mathrm{wL}=\mathbf{0} \\
& \boldsymbol{w}^{2} \mathrm{~L}^{2}=\frac{L}{\boldsymbol{C}}-\boldsymbol{R}^{2} \\
& \boldsymbol{w}^{\mathbf{2}}=\frac{\mathbf{1}}{\boldsymbol{C L}}-\frac{R^{2}}{L^{2}} \\
& \omega=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}
\end{aligned}
$$

Thus when capacitor C is varied for maximum impedance, the condition of unity power factor is automatically adjusted.
Maximum impedance by varying inductance can also be obtained by making

$$
\frac{d}{d X_{L}}|Z|^{2}=0
$$

Or

$$
\frac{2\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right] X_{L} X_{C}^{2}-2\left(R^{2}+X_{L}^{2}\right) X_{C}^{2}\left(X_{L}-X_{C}\right)}{\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right]^{2}}
$$

Or

$$
2 X\left\{R^{2}+\left(X_{L}-X_{C}\right)^{2} X_{L}-\left(R^{2}+X_{L}^{2}\right)\left(X_{L}-X_{C}\right)\right\}=0
$$

$$
\begin{aligned}
& \mathbf{2 X}\left\{\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right] X_{L}-\left(R^{2}+X_{L}^{2}\right)\left(X_{L}-X_{C}\right)\right\}=0 \\
& \mathbf{2} X_{C}^{2}\left\{\boldsymbol{R}^{2} X_{L}+X_{L}^{3}+X_{C}{ }^{2} X_{L}-2 X_{L}^{2} X_{C}-\left(R^{2} X_{L}-R^{2} X_{C}+X_{L}^{3}-X_{L}^{2} X_{C}\right\}=0\right. \\
& \mathbf{2} X_{C}^{2}\left\{X_{L}+X_{L}^{3}+X_{C}{ }^{2} X_{L}-2 X_{L}^{2} X_{C}-R^{2} X_{L}+R^{2} X_{C}-X_{L}{ }^{3}+X_{L}^{2} X_{C}\right\}=0 \\
& \left.\mathbf{2} X_{\left\{X_{C}\right.}^{2} X_{L}-X_{L}^{2} X_{C}+R^{2} X_{C}\right\}=0 \\
& X_{C}\left\{X_{L} X_{C}-X_{L}^{2}+\right\}=0 \\
& X_{L} X_{C}-X_{L}^{2}+R^{2}=0 \\
& X_{L}^{2}-X_{L} X_{C}-R^{2}=0
\end{aligned}
$$

Solving above quadratic equation,

$$
X_{L}=\frac{X_{C}}{2}+\sqrt{\left(\frac{X_{C}}{2}\right)^{2}+R^{2}}
$$

This gives the value of reactance X_{L} for maximum impedance and denotes the frequency at which it occurs as w_{a}.
Again from the equation 1

$$
X_{L}^{2}-X_{L} X_{C}-R^{2}=0
$$

$$
\begin{aligned}
& (w L)^{2}-\frac{1}{w C} w L-R^{2}=0 \\
& w^{2} L^{2}-\frac{}{w C} w L-R^{2}=0 \\
& w^{2} L^{2}=\frac{L}{C}+R^{2}
\end{aligned}
$$

$$
W^{2}=\frac{1}{L C}+\frac{R^{2}}{L^{2}}
$$

$$
\omega_{\operatorname{ar} l}=\sqrt{\frac{1}{L C}+\frac{R^{2}}{L^{2}}}
$$

With L adjusted for maximum impedance, $w_{a r_{l}} \neq w_{a r}$, where $w_{a r}$ is the antiresonant frequency Similarly, the maximum impedance condition can be obtained by varying frequency, by

$$
\frac{d}{d \omega}|Z|^{2}=0
$$

Denoting the frequency at which it occurs as $w_{\text {arf }}$

$$
\omega_{\operatorname{ar} f}=\left[\frac{1}{L C} \sqrt{1+\frac{\omega R^{2} C}{L}}-\frac{R^{2}}{L^{2}}\right]^{1 / 2}
$$

The General Case - Resistance Present in both Branches

In some types of anti-resonant circuits, a resistance may be present in series with the capacitive branch as well as the inductive branch, as shown in below figure

The admittance of the inductive branch is

$$
Y_{L}=\frac{R_{1}-j \omega L}{R_{1}^{2}-\omega^{2} L^{2}}
$$

And that of capacitive branch is

$$
Y_{C}=\frac{R_{2}-j / \omega C}{R_{2}^{2}-\frac{1}{\omega^{2} C^{2}}}
$$

Therefore, total admittance

$$
Y=Y_{L}+Y_{C}=\frac{R_{1}}{R_{1}^{2}+\omega^{2} L^{2}}+\frac{R_{2}}{R_{2}^{2}+\frac{1}{\omega^{2} C^{2}}}-j\left(\frac{\omega L}{R_{1}^{2}+\omega^{2} L^{2}}+\frac{v / \omega C}{R_{2}^{2}+\frac{1}{\omega^{2} C^{2}}}\right)
$$

For antiresonane, the reactive term must be zero, i.e

Or

$$
\begin{gathered}
\omega_{\mathrm{ar}} L\left(R_{2}^{2}+\frac{1}{\omega_{\mathrm{ar}}^{2} C^{2}}\right)-\frac{1}{\omega_{\mathrm{ar}} C^{2}}\left(R_{1}^{2}+\omega_{\mathrm{ar}}^{2} L^{2}\right)=0 \\
f_{\mathrm{ar}}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}\left(\frac{L-R_{1}^{2} C}{L-R_{2}^{2} C}\right)}
\end{gathered}
$$

Problem 1

A series RLC circuit consist of $R=10 \Omega, L=0.01 \mathrm{H}$, and $C=0.01 \mu \mathrm{~F}$ is connected across a supply of 10 mV . Determine , i) f_{0} ii) Q-factor iii)BW iv) I_{0}

Solution:
i) $f_{0}=\frac{1}{2 \pi \sqrt{L C}}$
$=15.915 \mathrm{kHz}$
ii) Q-factor $\quad Q_{0}=\sqrt{\frac{L}{C}} \frac{1}{R}$

$$
=100
$$

iii) B. $W=\left(f_{2}-f_{1}\right)=\frac{R}{2 \pi L}$

$$
=159.155
$$

$$
\text { iv) } \begin{aligned}
I_{0} & =\frac{V}{R} \\
& =1 \mathrm{~mA}
\end{aligned}
$$

Problem 2

It is required that a series RLC circuit should resonate at 1 MHz . Determine values of R, L and C if bandwidth of the circuit is 5 kHz and its impedance is 50Ω at resonance.

Solution:

i) The impedance of series RLC circuit at resonance is defined as,

$$
\begin{aligned}
& Z_{0}=R \\
& \text { i.e } R=50 \Omega
\end{aligned}
$$

ii) $B . W=\frac{R}{2 \pi L}$

$$
=5000
$$

Therefore $\mathrm{L}=\frac{R}{2 \pi(B . W)}$

$$
\mathrm{L}=1.5915 \mathrm{mH}
$$

iii) The resonant frequency is given by,

$$
\begin{aligned}
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
& C=\frac{1}{\left(2 \pi f_{0}\right)^{2}(L)} \\
& C=15.9159 \mathrm{pF}
\end{aligned}
$$

Problem 3

A coil is connected in series with a variable capacitor across $v(t)=10 \cos 1000 \mathrm{t}$. The capacitor is varie and the current is maximum when $\mathrm{C}=10 \mu \mathrm{~F}$. When $\mathrm{C}=12.5 \mu \mathrm{~F}$, the current is 0.707 times the maximum value. Find L, R and Q of the coil.

Solution:

Comparing with standard expression for voltage

$$
\mathrm{w}=1000 \mathrm{rad} / \mathrm{sec}
$$

The current is maximum at $C_{0}=10 \mu \mathrm{~F}$

$$
\begin{gathered}
\omega_{0}=\frac{1}{\sqrt{L C}} \\
1000=\frac{1}{\sqrt{L C_{0}}} \\
\mathrm{~L}=0.1 \mathrm{H}
\end{gathered}
$$

At $\mathbf{C}=\mathbf{1 2 . 5 \mu \mathrm { F }}$, current decreases to 0.707 times maximum current. Thus is half power condition. At half power condition, we can write

$$
\begin{gathered}
\left|X_{L}-X_{c}\right|=R \\
\left|W_{0} L-\frac{1}{W_{0} C}\right|=R \\
\mathrm{R}=20 \Omega \\
Q_{0}=\frac{w_{0} L}{R} \\
Q_{0}=5
\end{gathered}
$$

Problem 4
A series RLC circuit consist of $R=2 \Omega, L=2 \mathrm{mH}$, and $\mathrm{C}=10 \mu \mathrm{~F}$. Calculate Q factor, bandwidth, the resonant frequency and half power frequencies.

Solution:

i) Q-factor $\quad Q_{0}=\sqrt{\frac{L}{C}} \frac{1}{R}$

$$
7.071
$$

ii) B. $W=\left(f_{2}-f_{1}\right)=\frac{R}{2 \pi L}$

$$
=159.155 \mathrm{~Hz}
$$

iii) The resonant frequency is given by

$$
\begin{aligned}
\boldsymbol{f}_{0} & =(B W)\left(\boldsymbol{Q}_{\mathbf{0}}\right) \\
& =1125.385
\end{aligned}
$$

iv) The resonant frequency is geometric mean of the half power frequencies i.e

$$
f_{0}=\sqrt{f_{1} f_{2}} \text { or } f_{0}^{2}=f_{1} f_{2}
$$

Hence we can write two equations as,
B. $W=\left(f_{2}-f_{1}\right)=159.155 \mathrm{~Hz}$

And $f_{1} f_{2}=f_{0}^{2}=(1125.385)^{2}=1.2665 * 10^{6}$
Putting value of $f 2$ from equation 1 in equation 2 , we get $\left(159.155+f_{1}\right)=1.2665 * 10^{6}$

Therefore $f_{1}^{2}+159.155 f_{1}-1.2665 * \mathbf{1 0}^{6}=0$
Solving quadratic equation for \boldsymbol{f}_{1} we get
$f_{1}=1.0486 * 10^{3} \mathrm{~Hz} \quad$ or $\quad f_{1}=-1.2077 \mathrm{kHz}$
Discarding $f_{1}=-\mathbf{1 . 2 0 7 7} \mathrm{kHz}$ as frequency can't be negative.
Hence

$$
f_{1}=1.0486 * 10^{3} \mathrm{~Hz}
$$

$$
\begin{array}{ll}
\text { Now } & f_{2}-f_{1}=159.155 \\
& f_{2}=159.155+f_{1}
\end{array}
$$

$$
f_{2}=1.2077 \mathrm{kHz}
$$

Problem 5

An RLC series circuit has an inductive coil of ' R ' Ω resistance and inductance of ' L ' H is in series with a capacitor ' C ' F. The circuit draws a maximum current of 15 A when connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$, supply. If the Q - factor is 5 , find the parameter of the circuit.

Solution: $\boldsymbol{i}_{\mathbf{0}}=15 A, V=230 \mathrm{~V}, \boldsymbol{f}_{\mathbf{0}}=50 \mathrm{~Hz}, Q_{0}=5$
$I_{0}=\frac{V}{R}$ i.e $\quad R=V / I_{0}$
$f_{0}=\frac{1}{2 \pi \sqrt{L C}}$ i.e

$$
R=15.33 \Omega
$$

$$
\begin{equation*}
L C=1.0132 * 10^{-5} \tag{1}
\end{equation*}
$$

i) Q-factor $\quad Q_{0}=\sqrt{\frac{L}{C}} \frac{1}{R}$

Therefore $\frac{L}{\left(\frac{1.0132 * 10^{-5}}{L}\right)}=5877.752$

$$
\frac{L}{C}=5877.752 \text { and use (1) }
$$

$$
\begin{aligned}
& \mathrm{L}=0.244 \mathrm{H} \\
& \mathrm{C}=41.518 \mu \mathrm{~F}
\end{aligned}
$$

PROBLEMS ON PARALLEL RESONANCE

Problem 1: In the circuit given in fig, an inductance of 0.1 H having a Q of 5 is in parallel with a capacitor. Determine the value of capacitance and coil resistance at resonance frequency of $500 \mathrm{rad} / \mathrm{sec}$.

Solution: The given circuit is practical parallel resonant circuit. The antiresonant frequency interms of the Q - factor is given by
i) $f_{a r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}} \sqrt{1-\frac{1}{Q_{0}^{2}}}$
$\left(2 \pi f_{a r}\right)=\sqrt{\frac{1}{L C}} \sqrt{1-\frac{1}{Q_{0}^{2}}}$
$w_{a r}=500=\frac{1}{\sqrt{(0.1)(C)}} \sqrt{1-\frac{1}{(5)^{2}}}$
$\mathrm{C}=38.4 \mu \mathrm{~F}$

The \mathbf{Q} - factor at antiresonant frequency is given by
$\boldsymbol{Q}_{\mathbf{0}}=\frac{\boldsymbol{w}_{a r} L}{R}$
$R=\frac{w_{a r} L}{Q_{0}}$
$R=10 \Omega$

Problem 2: If $\mathrm{R}=25 \Omega, \mathrm{~L}=0.5 \mathrm{H}$ and $\mathrm{C}=5 \mu \mathrm{~F}$, find the $w_{a r}, Q$ and bandwidth for the circuit as shown in the figure

Solution:

i) $W_{a r}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$

$$
w_{a r}=630.476 \mathrm{rad} / \mathrm{sec}
$$

$\boldsymbol{f}_{\boldsymbol{a r}}=\frac{\boldsymbol{w}_{\boldsymbol{a}}}{2 \boldsymbol{\pi}}$
$f_{a r}=100.343 \mathrm{~Hz}$
ii) The Q - factor at antiresonant frequency is given by
$Q_{0}=\frac{w_{a r} L}{R}$
$Q_{0}=12.6095$
iv) $B W=\frac{f_{a r}}{Q_{0}}$
$B W=7.9577 \mathrm{~Hz}$

Problem 3: Find the value of R1 such that the circuit given in figure is resonant.

Solution:

The total admittance of the circuit is given by,

$$
Y_{T}=Y_{L}+Y_{C}=\frac{1}{Z_{L}}+\frac{1}{Z_{c}}
$$

$=\frac{1}{R_{1}+j 6}+\frac{1}{10-j 4}$
$=\frac{R_{1}-j 6}{R_{1}^{2}+36}+\frac{10+j 4}{100+16}$
$Y_{T}=\left[\frac{R_{1}}{R_{1}^{2}+36}+\frac{10}{116}\right]+j\left[\frac{4}{116}-\frac{6}{R_{1}^{2}+36}\right]$
Now to have resonance in the parallel circuit, the susceptance should be zero.
Therefore ${ }_{116}^{4}-\frac{6}{R_{1}^{2}+36}=0$
$\frac{4}{116}=\frac{6}{R_{1}^{2}+36}$
$R_{1}^{2}+36=176$
$R_{1}^{2}=138$
$R_{1}=11.7473 \Omega$

Problem 4: For the circuit shown in figure, find two values of capacitor for the resonance. Derive the formula used.
Consider $\mathrm{f}=50 \mathrm{~Hz}$
Solution:
Let the resistance in series with inductance be R_{L} and
that in series with capacitance be R_{C},
$\therefore R_{L}=20 \Omega, R_{c}=10 \Omega, j X_{L}=j 37.7 \Omega$
Total susceptance of parallel resonant circuit can be written as,

$$
Y_{T}=Y_{L}+Y_{C}=\frac{1}{Z_{L}}+\frac{1}{Z_{c}}
$$

$=\frac{1}{R_{L}+j X_{L}}+\frac{1}{R_{C}-j X_{C}}$
$=\frac{R_{L}-j X_{L}}{R_{L}^{2}+X_{L}^{2}}+\frac{R_{C}+j X_{C}}{R_{C}^{2}+X_{C}^{2}}$
$Y_{T}=\left[\frac{R_{L}}{R_{L}^{2}+X_{L}^{2}}+\frac{R_{C}}{R_{C}^{2}+X_{C}^{2}}\right]+j\left[\frac{X_{C}}{R_{C}^{2}+X_{C}^{2}}-\frac{X_{L}}{R_{L}^{2}+X_{L}^{2}}\right]$

Now at antiresonance, the susceptance is equal be zero. Hence equating imaginary term to zero, we get
$\underset{C}{\boldsymbol{R}_{C}}{ }_{C} X_{C}^{Z}=\frac{X_{L}}{R_{L}^{L}+X_{L}^{Z}}$
i.e $\frac{X_{C}}{X_{C}^{2}+100}=\frac{37.7}{400+1421.49}$
$\frac{X_{C}}{X_{\varepsilon}^{2}+100}=\frac{37.7}{1821.29}$
Simplifying expression,
$37.3\left(X_{C}^{2}+100\right)=1821.29 X_{C}$
$X_{C}^{2}+100=48.31 X_{C}$
$X_{C}^{2}-48.31 X_{C}+100=0$
Solving above quadratic equation, we get
$X_{C_{1}}=46.1428$
Or $X_{C_{2}}=2.1672$
But $X_{C}=\frac{1}{w C}=\frac{1}{2 \pi f C}$
i.e $C=\frac{1}{2 \pi f X_{C}}=\frac{1}{(100 \pi)\left(X_{c}\right)}$
$C_{1}=\frac{1}{(100 \pi)(46.1428)}=68.9836 \mu \mathrm{~F}$ and
$C_{2}=\frac{1}{(100 \pi)(2.1672)}=1.4687 \mathrm{mF}$
Hence two values of capacitor to have resonance at 50 Hz are $68.9836 \mu \mathrm{~F}$ and 1.4687 mF .

